transformer_int4 (#8553)

This commit is contained in:
Zhao Changmin 2023-07-19 08:33:58 +08:00 committed by GitHub
parent 49d636e295
commit 3dbe3bf18e

View file

@ -0,0 +1,135 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
from langchain import LLMChain, PromptTemplate
from bigdl.llm.langchain.llms import TransformersLLM
from langchain.memory import ConversationBufferWindowMemory
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import WhisperProcessor
import speech_recognition as sr
import numpy as np
import pyttsx3
import argparse
import time
def prepare_chain(args):
llm_model_path = args.llm_model_path
# Use a easy prompt could bring good-enough result
# For Chinese Prompt
# template = """{history}\n\n问{human_input}\n\n答"""
template = """
{history}
Q: {human_input}
A:"""
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
llm = TransformersLLM.from_model_id(
model_id=llm_model_path,
model_kwargs={"temperature": 0,
"max_length": args.max_length,
"trust_remote_code": True},
)
# Following code are complete the same as the use-case
voiceassitant_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
recog_model_path = args.recog_model_path
processor = WhisperProcessor.from_pretrained(recog_model_path)
recogn_model = AutoModelForSpeechSeq2Seq.from_pretrained(recog_model_path, load_in_4bit=True)
recogn_model.config.forced_decoder_ids = None
forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task="transcribe")
return voiceassitant_chain, processor, recogn_model, forced_decoder_ids
def listen(chain):
voiceassitant_chain, processor, recogn_model, forced_decoder_ids = chain
# engine = pyttsx3.init()
r = sr.Recognizer()
with sr.Microphone(device_index=1, sample_rate=16000) as source:
print("Calibrating...")
r.adjust_for_ambient_noise(source, duration=5)
# optional parameters to adjust microphone sensitivity
# r.energy_threshold = 200
# r.pause_threshold=0.5
print("Okay, go!")
while 1:
text = ""
print("listening now...")
try:
audio = r.listen(source, timeout=5, phrase_time_limit=30)
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
print("Recognizing...")
st = time.time()
input_features = processor(frame_data,
sampling_rate=audio.sample_rate,
return_tensors="pt").input_features
predicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
time_0 = time.time() - st
except Exception as e:
unrecognized_speech_text = (
f"Sorry, I didn't catch that. Exception was: \n {e}"
)
text = unrecognized_speech_text
st = time.time()
response_text = voiceassitant_chain.predict(human_input=text,
stop="\n\n")
print(response_text)
print(f"Recognized in {time_0}s, Predicted in {time.time() - st}s")
# engine.say(response_text)
# engine.runAndWait()
def main(args):
chain = prepare_chain(args)
listen(chain)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDL-LLM Transformer Int4 Langchain Voice Assistant Example')
parser.add_argument('-r', '--recog-model-path', type=str, required=True,
help="the path to the huggingface speech recognition model")
parser.add_argument('-m','--llm-model-path', type=str, required=True,
help='the path to the huggingface llm model')
parser.add_argument('-x','--max-length', type=int, default=256,
help='the max length of model tokens input')
parser.add_argument('-l', '--language', type=str, default="english",
help='language to be transcribed')
args = parser.parse_args()
main(args)