add llama3.2-vision Pytorch example (#12165)
This commit is contained in:
parent
e2ef9e938e
commit
3d044dbf53
2 changed files with 211 additions and 0 deletions
|
|
@ -0,0 +1,134 @@
|
||||||
|
# Llama3.2-Vision
|
||||||
|
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Llama3.2-Vision models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) as a reference Llama3.2-Vision model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a Llama3.2-Vision model to predict the next N tokens using `generate()` API, with IPEX-LLM 'optimize_model' API on Intel GPUs.
|
||||||
|
### 1. Install
|
||||||
|
#### 1.1 Installation on Linux
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
||||||
|
pip install transformers==4.45.0
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 1.2 Installation on Windows
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11 libuv
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
||||||
|
pip install transformers==4.45.0
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables for Linux
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Skip this step if you are running on Windows.
|
||||||
|
|
||||||
|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Runtime Configurations
|
||||||
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||||
|
#### 3.1 Configurations for Linux
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Data Center GPU Max Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export ENABLE_SDP_FUSION=1
|
||||||
|
```
|
||||||
|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3.2 Configurations for Windows
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
set BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||||
|
### 4. Running examples
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2-Vision model (e.g. `meta-llama/Llama-3.2-11B-Vision-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-3.2-11B-Vision-Instruct'`.
|
||||||
|
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe image in detail'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
#### [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct)
|
||||||
|
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
Describe image in detail
|
||||||
|
-------------------- Output --------------------
|
||||||
|
This image features a charming anthropomorphic rabbit standing on a dirt path, surrounded by a picturesque rural landscape.
|
||||||
|
|
||||||
|
The rabbit, with its light brown fur and distinctive large
|
||||||
|
```
|
||||||
|
|
||||||
|
The sample input image is:
|
||||||
|
|
||||||
|
<a href="https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"><img width=400px src="https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" ></a>
|
||||||
|
|
@ -0,0 +1,77 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
||||||
|
|
||||||
|
from ipex_llm import optimize_model
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3.2-Vision model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||||
|
help='The huggingface repo id for the Llama3.2-Vision model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--image-url-or-path', type=str,
|
||||||
|
default='https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg',
|
||||||
|
help='The URL or path to the image to infer')
|
||||||
|
parser.add_argument('--prompt', type=str, default="Describe image in detail",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
image_path = args.image_url_or_path
|
||||||
|
prompt = args.prompt
|
||||||
|
|
||||||
|
model = MllamaForConditionalGeneration.from_pretrained(model_path)
|
||||||
|
model = optimize_model(model, modules_to_not_convert=["multi_modal_projector"])
|
||||||
|
model = model.half().eval()
|
||||||
|
model = model.to('xpu')
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(model_path)
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image"},
|
||||||
|
{"type": "text", "text": prompt}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||||
|
|
||||||
|
if os.path.exists(image_path):
|
||||||
|
image = Image.open(image_path)
|
||||||
|
else:
|
||||||
|
image = Image.open(requests.get(image_path, stream=True).raw)
|
||||||
|
|
||||||
|
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
for i in range(3):
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
|
||||||
|
et = time.time()
|
||||||
|
print(et - st)
|
||||||
|
print(processor.decode(output[0]))
|
||||||
Loading…
Reference in a new issue