[LLM] Add RWKV4 HF GPU Example (#10105)
* Add GPU HF example for RWKV 4 * Add link to rwkv4 * fix
This commit is contained in:
		
							parent
							
								
									518ef95abc
								
							
						
					
					
						commit
						3a46b57253
					
				
					 4 changed files with 239 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -180,6 +180,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| SOLAR | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/solar) |
 | 
			
		||||
| Phixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral) |
 | 
			
		||||
| InternLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm2) |
 | 
			
		||||
| RWKV4 |  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv4) |
 | 
			
		||||
 | 
			
		||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -77,6 +77,8 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| SOLAR | [link](example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](example/GPU/HF-Transformers-AutoModels/Model/solar) |
 | 
			
		||||
| Phixtral | [link](example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](example/GPU/HF-Transformers-AutoModels/Model/phixtral) |
 | 
			
		||||
| InternLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm2) |
 | 
			
		||||
| RWKV4 |  | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv4) |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### Working with `bigdl-llm`
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,148 @@
 | 
			
		|||
# RWKV4
 | 
			
		||||
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on RWKV4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [RWKV/rwkv-4-world-7b](https://huggingface.co/RWKV/rwkv-4-world-7b) as a reference RWKV4 model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example 1: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a RWKV4 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
```
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
#### 2.1 Configurations for Linux
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
#### 2.2 Configurations for Windows
 | 
			
		||||
```cmd
 | 
			
		||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
			
		||||
```
 | 
			
		||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
 | 
			
		||||
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For other Intel dGPU Series</summary>
 | 
			
		||||
 | 
			
		||||
There is no need to set further environment variables.
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the RWKV4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'RWKV/rwkv-4-world-7b'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [RWKV/rwkv-4-world-7b](https://huggingface.co/RWKV/rwkv-4-world-7b)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
User: hi
 | 
			
		||||
 | 
			
		||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 | 
			
		||||
 | 
			
		||||
User: AI是什么?
 | 
			
		||||
 | 
			
		||||
Assistant:
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
User: hi
 | 
			
		||||
 | 
			
		||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 | 
			
		||||
 | 
			
		||||
User: AI是什么?
 | 
			
		||||
 | 
			
		||||
Assistant: AI是人工智能的缩写,是指计算机系统的能力,使其能够模拟人类的智能
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
User: hi
 | 
			
		||||
 | 
			
		||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 | 
			
		||||
 | 
			
		||||
User: What is AI?
 | 
			
		||||
 | 
			
		||||
Assistant:
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
User: hi
 | 
			
		||||
 | 
			
		||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 | 
			
		||||
 | 
			
		||||
User: What is AI?
 | 
			
		||||
 | 
			
		||||
Assistant: AI, or artificial intelligence, refers to the simulation of human intelligence processes by machines, especially computer systems. This includes the simulation of human perception, reasoning, learning
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,88 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning is adpated from https://huggingface.co/RWKV/rwkv-4-world-7b
 | 
			
		||||
def generate_prompt(instruction):
 | 
			
		||||
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
 | 
			
		||||
    return f"""User: hi
 | 
			
		||||
 | 
			
		||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 | 
			
		||||
 | 
			
		||||
User: {instruction}
 | 
			
		||||
 | 
			
		||||
Assistant:"""
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for RWKV4 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="RWKV/rwkv-4-world-7b",
 | 
			
		||||
                        help='The huggingface repo id for the RWKV4 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    #
 | 
			
		||||
    # Please note that for RWKV4 models, `optimize_model` is required to set as True
 | 
			
		||||
    #
 | 
			
		||||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
			
		||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = generate_prompt(instruction=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue