Add qwen3 support (#13137)
This commit is contained in:
		
							parent
							
								
									be76918b61
								
							
						
					
					
						commit
						3a28b69202
					
				
					 3 changed files with 285 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -1078,6 +1078,12 @@ def _optimize_pre(model, qtype=None):
 | 
			
		|||
    elif model.config.model_type == "qwen2_5_omni":
 | 
			
		||||
        from ipex_llm.transformers.models.qwen2_5_omni import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    elif model.config.model_type == "qwen3":
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3 import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    elif model.config.model_type == "qwen3_moe":
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3_moe import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2106,7 +2112,28 @@ def _optimize_post(model):
 | 
			
		|||
            convert_forward(model.token2wav, module.DiTAttention, dit_attention_forward)
 | 
			
		||||
            dit_model = model.token2wav.code2wav_dit_model
 | 
			
		||||
            dit_model._create_block_diff = MethodType(_create_block_diff, dit_model)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "qwen3":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3 import qwen3_model_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3 import qwen3_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
        convert_forward(model, module.Qwen3RMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3Model, qwen3_model_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3Attention, qwen3_attention_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3MLP, mlp_silu_forward)
 | 
			
		||||
    elif model.config.model_type == "qwen3_moe":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3_moe import qwen3_moe_model_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3 import qwen3_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen3_moe import qwen3_moe_moe_forward
 | 
			
		||||
        convert_forward(model, module.Qwen3MoeRMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3MoeModel, qwen3_moe_model_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3MoeAttention, qwen3_attention_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen3MoeSparseMoeBlock, qwen3_moe_moe_forward)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										115
									
								
								python/llm/src/ipex_llm/transformers/models/qwen3.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								python/llm/src/ipex_llm/transformers/models/qwen3.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,115 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, List, Tuple
 | 
			
		||||
from transformers.processing_utils import Unpack
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.modeling_outputs import MoeModelOutputWithPast
 | 
			
		||||
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
 | 
			
		||||
 | 
			
		||||
from transformers.models.qwen3.modeling_qwen3 import apply_rotary_pos_emb
 | 
			
		||||
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model, Qwen3Attention
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
    merge_qkv_base(module, Qwen3Attention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen3_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    output_router_logits: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
 | 
			
		||||
) -> MoeModelOutputWithPast:
 | 
			
		||||
    device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    use_cache = True if device.type == "xpu" else use_cache
 | 
			
		||||
    if use_cache and not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
        past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
 | 
			
		||||
    return Qwen3Model.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        output_router_logits=output_router_logits,
 | 
			
		||||
        cache_position=cache_position,
 | 
			
		||||
        **flash_attn_kwargs,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen3_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    position_embeddings: Tuple[torch.Tensor, torch.Tensor],
 | 
			
		||||
    attention_mask: Optional[torch.Tensor],
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs: Unpack[FlashAttentionKwargs],
 | 
			
		||||
):
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, -1, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.config.num_attention_heads,
 | 
			
		||||
                                                        self.config.num_key_value_heads,
 | 
			
		||||
                                                        self.config.num_key_value_heads], dim=1)
 | 
			
		||||
    query_states = self.q_norm(query_states)
 | 
			
		||||
    key_states = self.k_norm(key_states)
 | 
			
		||||
 | 
			
		||||
    cos, sin = position_embeddings
 | 
			
		||||
    if device.type == "xpu":
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        make_cache_contiguous_inplaced(cos, sin)
 | 
			
		||||
        xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, cache_kwargs)
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == key_states.size(2), self.scaling
 | 
			
		||||
    )
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, -1)
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
    return attn_output, attn_weights
 | 
			
		||||
							
								
								
									
										142
									
								
								python/llm/src/ipex_llm/transformers/models/qwen3_moe.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										142
									
								
								python/llm/src/ipex_llm/transformers/models/qwen3_moe.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,142 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, List
 | 
			
		||||
from transformers.processing_utils import Unpack
 | 
			
		||||
from transformers.modeling_outputs import MoeModelOutputWithPast
 | 
			
		||||
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
 | 
			
		||||
 | 
			
		||||
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeModel, Qwen3MoeAttention
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_fuse_moe
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
    merge_qkv_base(module, Qwen3MoeAttention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen3_moe_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    output_router_logits: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
 | 
			
		||||
) -> MoeModelOutputWithPast:
 | 
			
		||||
    device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    use_cache = True if device.type == "xpu" else use_cache
 | 
			
		||||
    if use_cache and not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
        past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
 | 
			
		||||
    return Qwen3MoeModel.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        output_router_logits=output_router_logits,
 | 
			
		||||
        cache_position=cache_position,
 | 
			
		||||
        **flash_attn_kwargs,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen3_moe_moe_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    batch_size, sequence_length, hidden_dim = hidden_states.shape
 | 
			
		||||
    hidden_states = hidden_states.view(-1, hidden_dim)
 | 
			
		||||
    router_logits = self.gate(hidden_states)
 | 
			
		||||
 | 
			
		||||
    if router_logits.device == "xpu":
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        selected_experts, routing_weights = xe_addons.moe_softmax_topk(
 | 
			
		||||
            router_logits, self.top_k, self.norm_topk_prob
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        routing_weights = torch.nn.functional.softmax(router_logits, dim=1, dtype=torch.float)
 | 
			
		||||
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
 | 
			
		||||
        if self.norm_topk_prob:
 | 
			
		||||
            routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
 | 
			
		||||
        routing_weights = routing_weights.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
    if selected_experts.size(0) == 1:
 | 
			
		||||
        if use_fuse_moe(hidden_states, self.experts[0].down_proj.qtype):
 | 
			
		||||
            if getattr(self, "gates", None) is None:
 | 
			
		||||
                gate_addrs = [expert.gate_proj.weight.data_ptr() for expert in self.experts]
 | 
			
		||||
                up_addrs = [expert.up_proj.weight.data_ptr() for expert in self.experts]
 | 
			
		||||
                down_addrs = [expert.down_proj.weight.data_ptr() for expert in self.experts]
 | 
			
		||||
                gates = torch.tensor(gate_addrs, dtype=torch.uint64, device=hidden_states.device)
 | 
			
		||||
                ups = torch.tensor(up_addrs, dtype=torch.uint64, device=hidden_states.device)
 | 
			
		||||
                downs = torch.tensor(down_addrs, dtype=torch.uint64, device=hidden_states.device)
 | 
			
		||||
                self.register_buffer("gates", gates, persistent=False)
 | 
			
		||||
                self.register_buffer("ups", ups, persistent=False)
 | 
			
		||||
                self.register_buffer("downs", downs, persistent=False)
 | 
			
		||||
 | 
			
		||||
            import xe_linear
 | 
			
		||||
            final_hidden_states = xe_linear.moe_forward_vec(
 | 
			
		||||
                hidden_states, selected_experts, routing_weights, self.gates, self.ups, self.downs,
 | 
			
		||||
                hidden_states.size(-1), self.experts[0].intermediate_size,
 | 
			
		||||
                self.experts[0].down_proj.qtype
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            idxs = selected_experts.flatten().tolist()
 | 
			
		||||
            outputs = []
 | 
			
		||||
            for i in idxs:
 | 
			
		||||
                expert = self.experts[i]
 | 
			
		||||
                expert_out = expert(hidden_states)
 | 
			
		||||
                outputs.append(expert_out)
 | 
			
		||||
            outs = torch.cat(outputs, dim=0)
 | 
			
		||||
            reshaped_topk_weight = routing_weights.squeeze(0).unsqueeze(-1)
 | 
			
		||||
            final_hidden_states = (outs * reshaped_topk_weight).sum(dim=0, keepdim=True)
 | 
			
		||||
    else:
 | 
			
		||||
        final_hidden_states = torch.zeros(
 | 
			
		||||
            (batch_size * sequence_length, hidden_dim),
 | 
			
		||||
            dtype=hidden_states.dtype, device=hidden_states.device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # One hot encode the selected experts to create an expert mask
 | 
			
		||||
        # this will be used to easily index which expert is going to be sollicitated
 | 
			
		||||
        expert_mask = torch.nn.functional.one_hot(selected_experts,
 | 
			
		||||
                                                  num_classes=self.num_experts).permute(2, 1, 0)
 | 
			
		||||
 | 
			
		||||
        # Loop over all available experts in the model and perform the computation on each expert
 | 
			
		||||
        for expert_idx in range(self.num_experts):
 | 
			
		||||
            expert_layer = self.experts[expert_idx]
 | 
			
		||||
            idx, top_x = torch.where(expert_mask[expert_idx])
 | 
			
		||||
 | 
			
		||||
            # Index the correct hidden states and compute the expert hidden state for
 | 
			
		||||
            # the current expert. We need to make sure to multiply the output hidden
 | 
			
		||||
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
 | 
			
		||||
            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
 | 
			
		||||
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
 | 
			
		||||
 | 
			
		||||
            # However `index_add_` only support torch tensors for indexing so we'll use
 | 
			
		||||
            # the `top_x` tensor here.
 | 
			
		||||
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
 | 
			
		||||
    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
 | 
			
		||||
    return final_hidden_states, router_logits
 | 
			
		||||
		Loading…
	
		Reference in a new issue