Add qwen3 support (#13137)

This commit is contained in:
Yishuo Wang 2025-05-07 14:03:16 +08:00 committed by GitHub
parent be76918b61
commit 3a28b69202
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 285 additions and 1 deletions

View file

@ -1078,6 +1078,12 @@ def _optimize_pre(model, qtype=None):
elif model.config.model_type == "qwen2_5_omni":
from ipex_llm.transformers.models.qwen2_5_omni import merge_qkv
model.apply(merge_qkv)
elif model.config.model_type == "qwen3":
from ipex_llm.transformers.models.qwen3 import merge_qkv
model.apply(merge_qkv)
elif model.config.model_type == "qwen3_moe":
from ipex_llm.transformers.models.qwen3_moe import merge_qkv
model.apply(merge_qkv)
return model
@ -2106,7 +2112,28 @@ def _optimize_post(model):
convert_forward(model.token2wav, module.DiTAttention, dit_attention_forward)
dit_model = model.token2wav.code2wav_dit_model
dit_model._create_block_diff = MethodType(_create_block_diff, dit_model)
elif model.config.model_type == "qwen3":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.common import rms_norm_forward
from ipex_llm.transformers.models.qwen3 import qwen3_model_forward
from ipex_llm.transformers.models.qwen3 import qwen3_attention_forward
from ipex_llm.transformers.models.common import mlp_silu_forward
convert_forward(model, module.Qwen3RMSNorm, rms_norm_forward)
convert_forward(model, module.Qwen3Model, qwen3_model_forward)
convert_forward(model, module.Qwen3Attention, qwen3_attention_forward)
convert_forward(model, module.Qwen3MLP, mlp_silu_forward)
elif model.config.model_type == "qwen3_moe":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.common import rms_norm_forward
from ipex_llm.transformers.models.qwen3_moe import qwen3_moe_model_forward
from ipex_llm.transformers.models.qwen3 import qwen3_attention_forward
from ipex_llm.transformers.models.qwen3_moe import qwen3_moe_moe_forward
convert_forward(model, module.Qwen3MoeRMSNorm, rms_norm_forward)
convert_forward(model, module.Qwen3MoeModel, qwen3_moe_model_forward)
convert_forward(model, module.Qwen3MoeAttention, qwen3_attention_forward)
convert_forward(model, module.Qwen3MoeSparseMoeBlock, qwen3_moe_moe_forward)
return model

View file

@ -0,0 +1,115 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from typing import Optional, List, Tuple
from transformers.processing_utils import Unpack
from transformers.cache_utils import Cache
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.models.qwen3.modeling_qwen3 import apply_rotary_pos_emb
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model, Qwen3Attention
from ipex_llm.transformers.kv import DynamicNormalCache
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, Qwen3Attention)
def qwen3_model_forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> MoeModelOutputWithPast:
device = input_ids.device if input_ids is not None else inputs_embeds.device
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = True if device.type == "xpu" else use_cache
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
return Qwen3Model.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
**flash_attn_kwargs,
)
def qwen3_attention_forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
):
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, -1, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.config.num_attention_heads,
self.config.num_key_value_heads,
self.config.num_key_value_heads], dim=1)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
cos, sin = position_embeddings
if device.type == "xpu":
import xe_addons
make_cache_contiguous_inplaced(cos, sin)
xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
attn_weights = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2), self.scaling
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights

View file

@ -0,0 +1,142 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from typing import Optional, List
from transformers.processing_utils import Unpack
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeModel, Qwen3MoeAttention
from ipex_llm.transformers.kv import DynamicNormalCache
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.utils import use_fuse_moe
def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, Qwen3MoeAttention)
def qwen3_moe_model_forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> MoeModelOutputWithPast:
device = input_ids.device if input_ids is not None else inputs_embeds.device
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = True if device.type == "xpu" else use_cache
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
return Qwen3MoeModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
**flash_attn_kwargs,
)
def qwen3_moe_moe_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
if router_logits.device == "xpu":
import xe_addons
selected_experts, routing_weights = xe_addons.moe_softmax_topk(
router_logits, self.top_k, self.norm_topk_prob
)
else:
routing_weights = torch.nn.functional.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(hidden_states.dtype)
if selected_experts.size(0) == 1:
if use_fuse_moe(hidden_states, self.experts[0].down_proj.qtype):
if getattr(self, "gates", None) is None:
gate_addrs = [expert.gate_proj.weight.data_ptr() for expert in self.experts]
up_addrs = [expert.up_proj.weight.data_ptr() for expert in self.experts]
down_addrs = [expert.down_proj.weight.data_ptr() for expert in self.experts]
gates = torch.tensor(gate_addrs, dtype=torch.uint64, device=hidden_states.device)
ups = torch.tensor(up_addrs, dtype=torch.uint64, device=hidden_states.device)
downs = torch.tensor(down_addrs, dtype=torch.uint64, device=hidden_states.device)
self.register_buffer("gates", gates, persistent=False)
self.register_buffer("ups", ups, persistent=False)
self.register_buffer("downs", downs, persistent=False)
import xe_linear
final_hidden_states = xe_linear.moe_forward_vec(
hidden_states, selected_experts, routing_weights, self.gates, self.ups, self.downs,
hidden_states.size(-1), self.experts[0].intermediate_size,
self.experts[0].down_proj.qtype
)
else:
idxs = selected_experts.flatten().tolist()
outputs = []
for i in idxs:
expert = self.experts[i]
expert_out = expert(hidden_states)
outputs.append(expert_out)
outs = torch.cat(outputs, dim=0)
reshaped_topk_weight = routing_weights.squeeze(0).unsqueeze(-1)
final_hidden_states = (outs * reshaped_topk_weight).sum(dim=0, keepdim=True)
else:
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts,
num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits