LLM: add quantize kv cache for llama. (#10086)
* feat: add quantize kv cache for llama. * fix style. * add quantized attention forward function. * revert style. * fix style. * fix style. * update quantized kv cache and add quantize_qkv * fix style. * fix style. * optimize quantize kv cache. * fix style.
This commit is contained in:
parent
d848efe17c
commit
39d90839aa
1 changed files with 231 additions and 7 deletions
|
|
@ -40,6 +40,8 @@ import math
|
|||
import os
|
||||
import torch.nn.functional as F
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
||||
apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
|
|
@ -224,6 +226,226 @@ def llama_attention_forward_4_31(
|
|||
use_cache: bool = False,
|
||||
padding_mask: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||
forward_function = llama_attention_forward_4_31_quantized
|
||||
else:
|
||||
forward_function = llama_attention_forward_4_31_original
|
||||
return forward_function(
|
||||
self=self,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
padding_mask=padding_mask,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
||||
|
||||
def llama_attention_forward_4_31_quantized(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
padding_mask: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
|
||||
qtype = getattr(self.q_proj, "qtype", None)
|
||||
qtype_check = qtype in [SYM_INT4, FP8E5]
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
|
||||
# single batch decoding fast path
|
||||
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||
# and save the key/value states to cache, then return query states and the
|
||||
# extended key/value cache
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
tmp_cache_k, tmp_cache_v = init_kv_cache(
|
||||
bsz,
|
||||
self.num_key_value_heads,
|
||||
self.head_dim,
|
||||
0,
|
||||
1,
|
||||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len,
|
||||
self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"llama")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama")
|
||||
|
||||
if not self.training and not hidden_states.requires_grad:
|
||||
fsdp_flag = use_flash_attention(query_states, key_states)
|
||||
else:
|
||||
fsdp_flag = False
|
||||
if fsdp_flag:
|
||||
attention_dtype = torch.float16 # use fp16 for flash attention
|
||||
else:
|
||||
attention_dtype = original_dtype
|
||||
|
||||
# otherwise, use native attention
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is None:
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention weights should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
if use_cache:
|
||||
k_cache, v_cache = init_fp8_kv_cache(
|
||||
bsz, self.num_key_value_heads, kv_seq_len, self.head_dim,
|
||||
device=query_states.device
|
||||
)
|
||||
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
|
||||
key_states, value_states)
|
||||
past_key_value = (key_states, value_states)
|
||||
else:
|
||||
k_cache, v_cache = past_key_value
|
||||
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
|
||||
key_states, value_states)
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
past_key_value = (key_states, value_states)
|
||||
|
||||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states,
|
||||
self.num_key_value_groups).to(device, dtype=attention_dtype)
|
||||
value_states = repeat_kv(value_states,
|
||||
self.num_key_value_groups).to(device, dtype=attention_dtype)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention weights should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
|
||||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
|
||||
value_states.transpose(-1, -2))
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
if attn_output.size() != attn_output_size:
|
||||
invalidInputError(False,
|
||||
f"`attn_output` should be of size {attn_output_size},"
|
||||
f" but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
|
||||
dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
|
||||
for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def llama_attention_forward_4_31_original(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
padding_mask: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
|
@ -333,13 +555,15 @@ def llama_attention_forward_4_31(
|
|||
cache_v = past_key_value[1]
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
new_cache_k, new_cache_v = extend_kv_cache(
|
||||
bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device
|
||||
)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
|
|
|
|||
Loading…
Reference in a new issue