LLM: add quantize kv cache for llama. (#10086)
* feat: add quantize kv cache for llama. * fix style. * add quantized attention forward function. * revert style. * fix style. * fix style. * update quantized kv cache and add quantize_qkv * fix style. * fix style. * optimize quantize kv cache. * fix style.
This commit is contained in:
		
							parent
							
								
									d848efe17c
								
							
						
					
					
						commit
						39d90839aa
					
				
					 1 changed files with 231 additions and 7 deletions
				
			
		| 
						 | 
				
			
			@ -40,6 +40,8 @@ import math
 | 
			
		|||
import os
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
 | 
			
		||||
    apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
| 
						 | 
				
			
			@ -224,6 +226,226 @@ def llama_attention_forward_4_31(
 | 
			
		|||
    use_cache: bool = False,
 | 
			
		||||
    padding_mask: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
			
		||||
        forward_function = llama_attention_forward_4_31_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = llama_attention_forward_4_31_original
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self=self,
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_value=past_key_value,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        padding_mask=padding_mask,
 | 
			
		||||
        kwargs=kwargs
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_attention_forward_4_31_quantized(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    padding_mask: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, hidden_size = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # for flash attention
 | 
			
		||||
    original_dtype = hidden_states.dtype
 | 
			
		||||
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
 | 
			
		||||
    qtype = getattr(self.q_proj, "qtype", None)
 | 
			
		||||
    qtype_check = qtype in [SYM_INT4, FP8E5]
 | 
			
		||||
    no_tp = not self.config.pretraining_tp > 1
 | 
			
		||||
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
 | 
			
		||||
                          and enough_kv_room and bsz * q_len == 1)
 | 
			
		||||
 | 
			
		||||
    # single batch decoding fast path
 | 
			
		||||
    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
			
		||||
    # and save the key/value states to cache, then return query states and the
 | 
			
		||||
    # extended key/value cache
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
			
		||||
            bsz,
 | 
			
		||||
            self.num_key_value_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            0,
 | 
			
		||||
            1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
			
		||||
                                                                         self.q_proj.weight,
 | 
			
		||||
                                                                         self.k_proj.weight,
 | 
			
		||||
                                                                         self.v_proj.weight,
 | 
			
		||||
                                                                         position_ids,
 | 
			
		||||
                                                                         tmp_cache_k, tmp_cache_v,
 | 
			
		||||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         0,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.view(bsz, q_len,
 | 
			
		||||
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = key_states.view(bsz, q_len,
 | 
			
		||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = value_states.view(bsz, q_len,
 | 
			
		||||
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                         key_states,
 | 
			
		||||
                                                                         position_ids,
 | 
			
		||||
                                                                         "llama")
 | 
			
		||||
        else:
 | 
			
		||||
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                            cos, sin, position_ids, "llama")
 | 
			
		||||
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad:
 | 
			
		||||
        fsdp_flag = use_flash_attention(query_states, key_states)
 | 
			
		||||
    else:
 | 
			
		||||
        fsdp_flag = False
 | 
			
		||||
    if fsdp_flag:
 | 
			
		||||
        attention_dtype = torch.float16  # use fp16 for flash attention
 | 
			
		||||
    else:
 | 
			
		||||
        attention_dtype = original_dtype
 | 
			
		||||
 | 
			
		||||
    # otherwise, use native attention
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                bsz, self.num_key_value_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
                device=query_states.device
 | 
			
		||||
            )
 | 
			
		||||
            key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                           key_states, value_states)
 | 
			
		||||
            past_key_value = (key_states, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        k_cache, v_cache = past_key_value
 | 
			
		||||
        key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                       key_states, value_states)
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        past_key_value = (key_states, value_states)
 | 
			
		||||
 | 
			
		||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
            # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
            key_states = repeat_kv(key_states,
 | 
			
		||||
                                   self.num_key_value_groups).to(device, dtype=attention_dtype)
 | 
			
		||||
            value_states = repeat_kv(value_states,
 | 
			
		||||
                                     self.num_key_value_groups).to(device, dtype=attention_dtype)
 | 
			
		||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
			
		||||
        else:
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
			
		||||
 | 
			
		||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
 | 
			
		||||
                                                            value_states.transpose(-1, -2))
 | 
			
		||||
 | 
			
		||||
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
			
		||||
    if attn_output.size() != attn_output_size:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          f"`attn_output` should be of size {attn_output_size},"
 | 
			
		||||
                          f" but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    if self.config.pretraining_tp > 1:
 | 
			
		||||
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
			
		||||
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
			
		||||
                                                 dim=1)
 | 
			
		||||
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
			
		||||
                           for i in range(self.config.pretraining_tp)])
 | 
			
		||||
    else:
 | 
			
		||||
        attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_attention_forward_4_31_original(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    padding_mask: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, hidden_size = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
| 
						 | 
				
			
			@ -333,13 +555,15 @@ def llama_attention_forward_4_31(
 | 
			
		|||
            cache_v = past_key_value[1]
 | 
			
		||||
            if not enough_kv_room:
 | 
			
		||||
                # allocate new
 | 
			
		||||
                new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                           self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                           self.head_dim,
 | 
			
		||||
                                                           cache_k.size(2),
 | 
			
		||||
                                                           kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                           dtype=cache_k.dtype,
 | 
			
		||||
                                                           device=device)
 | 
			
		||||
                new_cache_k, new_cache_v = extend_kv_cache(
 | 
			
		||||
                    bsz,
 | 
			
		||||
                    self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                    self.head_dim,
 | 
			
		||||
                    cache_k.size(2),
 | 
			
		||||
                    kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                    dtype=cache_k.dtype,
 | 
			
		||||
                    device=device
 | 
			
		||||
                )
 | 
			
		||||
                new_cache_k[:] = cache_k
 | 
			
		||||
                new_cache_v[:] = cache_v
 | 
			
		||||
                cache_k = new_cache_k
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue