Baichuan 7b fp16 sdp and qwen2 pvc sdp (#10435)
* add baichuan sdp * update * baichuan2 * fix * fix style * revert 13b * revert
This commit is contained in:
parent
5ab52ef5b5
commit
399843faf0
3 changed files with 77 additions and 33 deletions
|
|
@ -24,8 +24,10 @@ from typing import List, Optional, Tuple, Union
|
|||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||
|
|
@ -267,7 +269,24 @@ def baichuan_attention_forward_7b_origin(
|
|||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_flash_attention(query_states, key_states, attention_mask):
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||
key_states.to(device, dtype=torch.float16),
|
||||
value_states.to(device, dtype=torch.float16),
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_fp16_esimd
|
||||
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||
key_states,
|
||||
value_states)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(False,
|
||||
|
|
@ -280,7 +299,8 @@ def baichuan_attention_forward_7b_origin(
|
|||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
attn_weights = torch.max(attn_weights,
|
||||
torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
|
|
@ -300,7 +320,7 @@ def baichuan_attention_forward_7b_origin(
|
|||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def baichuan_attention_forward_13b(
|
||||
|
|
@ -502,4 +522,4 @@ def baichuan_attention_forward_13b_origin(
|
|||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||
|
|
|
|||
|
|
@ -28,6 +28,7 @@ from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv
|
|||
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
|
||||
|
|
@ -270,6 +271,22 @@ def baichuan_attention_forward_7b_origin(
|
|||
attn_output = xops.memory_efficient_attention(
|
||||
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
||||
)
|
||||
else:
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_flash_attention(query_states, key_states, attention_mask):
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
||||
key_states.to(dtype=torch.float16),
|
||||
value_states.to(dtype=torch.float16),
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_fp16_esimd
|
||||
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||
key_states,
|
||||
value_states)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
if attention_mask is not None:
|
||||
if attention_mask.dtype == torch.bool:
|
||||
|
|
@ -289,7 +306,7 @@ def baichuan_attention_forward_7b_origin(
|
|||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def baichuan_attention_forward_13b(
|
||||
|
|
|
|||
|
|
@ -348,6 +348,13 @@ def qwen2_attention_forward_origin(
|
|||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_flash_attention(query_states, key_states, attention_mask):
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||
key_states.to(device, dtype=torch.float16),
|
||||
value_states.to(device, dtype=torch.float16),
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_fp16_esimd
|
||||
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||
|
|
|
|||
Loading…
Reference in a new issue