Baichuan 7b fp16 sdp and qwen2 pvc sdp (#10435)
* add baichuan sdp * update * baichuan2 * fix * fix style * revert 13b * revert
This commit is contained in:
parent
5ab52ef5b5
commit
399843faf0
3 changed files with 77 additions and 33 deletions
|
|
@ -24,8 +24,10 @@ from typing import List, Optional, Tuple, Union
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.checkpoint
|
import torch.utils.checkpoint
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||||
|
|
@ -267,25 +269,43 @@ def baichuan_attention_forward_7b_origin(
|
||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_flash_attention(query_states, key_states, attention_mask):
|
||||||
|
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||||
|
key_states.to(device, dtype=torch.float16),
|
||||||
|
value_states.to(device, dtype=torch.float16),
|
||||||
|
is_causal=True)
|
||||||
|
attn_weights = None
|
||||||
|
elif not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||||
|
import linear_fp16_esimd
|
||||||
|
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||||
|
key_states,
|
||||||
|
value_states)
|
||||||
|
attn_output = attn_output.view(query_states.shape)
|
||||||
|
attn_weights = None
|
||||||
|
else:
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
invalidInputError(False,
|
invalidInputError(False,
|
||||||
f"Attention weights should be of size "
|
f"Attention weights should be of size "
|
||||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
|
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
|
||||||
f", but is {attn_weights.size()}")
|
f", but is {attn_weights.size()}")
|
||||||
|
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
||||||
f"but is {attention_mask.size()}")
|
f"but is {attention_mask.size()}")
|
||||||
attn_weights = attn_weights + attention_mask
|
attn_weights = attn_weights + attention_mask
|
||||||
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
attn_weights = torch.max(attn_weights,
|
||||||
|
torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||||
|
|
||||||
# upcast attention to fp32
|
# upcast attention to fp32
|
||||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||||
dtype=torch.float32).to(query_states.dtype)
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||||
f"`attn_output` should be of size "
|
f"`attn_output` should be of size "
|
||||||
|
|
@ -300,7 +320,7 @@ def baichuan_attention_forward_7b_origin(
|
||||||
if not output_attentions:
|
if not output_attentions:
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
def baichuan_attention_forward_13b(
|
def baichuan_attention_forward_13b(
|
||||||
|
|
@ -502,4 +522,4 @@ def baichuan_attention_forward_13b_origin(
|
||||||
if not output_attentions:
|
if not output_attentions:
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||||
|
|
|
||||||
|
|
@ -28,6 +28,7 @@ from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv
|
||||||
restore_fp8_kv_cache, use_quantize_kv_cache
|
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||||
|
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
|
from bigdl.llm.transformers.models.utils import mlp_fusion_check
|
||||||
|
|
@ -271,16 +272,32 @@ def baichuan_attention_forward_7b_origin(
|
||||||
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if attention_mask is not None:
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
if attention_mask.dtype == torch.bool:
|
use_flash_attention(query_states, key_states, attention_mask):
|
||||||
attention_mask.masked_fill_(attention_mask.logical_not(), float("-inf"))
|
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
||||||
|
key_states.to(dtype=torch.float16),
|
||||||
|
value_states.to(dtype=torch.float16),
|
||||||
|
is_causal=True)
|
||||||
|
attn_weights = None
|
||||||
|
elif not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||||
|
import linear_fp16_esimd
|
||||||
|
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||||
|
key_states,
|
||||||
|
value_states)
|
||||||
|
attn_output = attn_output.view(query_states.shape)
|
||||||
|
attn_weights = None
|
||||||
|
else:
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.dtype == torch.bool:
|
||||||
|
attention_mask.masked_fill_(attention_mask.logical_not(), float("-inf"))
|
||||||
|
|
||||||
scaling_factor = 1 / math.sqrt(query_states.size(-1))
|
scaling_factor = 1 / math.sqrt(query_states.size(-1))
|
||||||
attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
|
attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
attn_output += attention_mask
|
attn_output += attention_mask
|
||||||
attn_output = torch.softmax(attn_output, -1)
|
attn_output = torch.softmax(attn_output, -1)
|
||||||
attn_output = torch.matmul(attn_output, value_states)
|
attn_output = torch.matmul(attn_output, value_states)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2)
|
attn_output = attn_output.transpose(1, 2)
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
||||||
|
|
@ -289,7 +306,7 @@ def baichuan_attention_forward_7b_origin(
|
||||||
if not output_attentions:
|
if not output_attentions:
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
def baichuan_attention_forward_13b(
|
def baichuan_attention_forward_13b(
|
||||||
|
|
|
||||||
|
|
@ -348,6 +348,13 @@ def qwen2_attention_forward_origin(
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
if not self.training and not hidden_states.requires_grad and \
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_flash_attention(query_states, key_states, attention_mask):
|
||||||
|
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||||
|
key_states.to(device, dtype=torch.float16),
|
||||||
|
value_states.to(device, dtype=torch.float16),
|
||||||
|
is_causal=True)
|
||||||
|
attn_weights = None
|
||||||
|
elif not self.training and not hidden_states.requires_grad and \
|
||||||
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||||
import linear_fp16_esimd
|
import linear_fp16_esimd
|
||||||
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
attn_output = linear_fp16_esimd.sdp_forward(query_states,
|
||||||
|
|
@ -379,12 +386,12 @@ def qwen2_attention_forward_origin(
|
||||||
training=self.training)
|
training=self.training)
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||||
"`attn_output` should be of size "
|
"`attn_output` should be of size "
|
||||||
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
|
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||||
f" but is {attn_output.size()}")
|
f" but is {attn_output.size()}")
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
attn_output = self.o_proj(attn_output)
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue