support running internlm xcomposer2 on gpu and add sdp optimization (#11115)
This commit is contained in:
parent
c5e8b90c8d
commit
37b98a531f
2 changed files with 106 additions and 17 deletions
|
|
@ -44,11 +44,11 @@ import transformers
|
||||||
import importlib.util
|
import importlib.util
|
||||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype, gguf_mixed_qtype
|
from ipex_llm.ggml.quantize import ggml_tensor_qtype, gguf_mixed_qtype
|
||||||
from .utils import logger, get_cur_qtype_and_imatrix
|
from .utils import logger, get_cur_qtype_and_imatrix
|
||||||
from typing import Union
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
from typing import List, Optional, Tuple, Union
|
from typing import List, Optional, Tuple, Union
|
||||||
|
from types import MethodType
|
||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
|
@ -1228,6 +1228,8 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
convert_forward(model, module.InternLM2Attention, internlm_xcomposser2_attention_forward)
|
convert_forward(model, module.InternLM2Attention, internlm_xcomposser2_attention_forward)
|
||||||
from ipex_llm.transformers.models.internlm import internlm_xcomposser2_mlp_forward
|
from ipex_llm.transformers.models.internlm import internlm_xcomposser2_mlp_forward
|
||||||
convert_forward(model, module.InternLM2MLP, internlm_xcomposser2_mlp_forward)
|
convert_forward(model, module.InternLM2MLP, internlm_xcomposser2_mlp_forward)
|
||||||
|
from ipex_llm.transformers.models.internlm import internlm_xcomposser2_chat
|
||||||
|
model.chat = MethodType(internlm_xcomposser2_chat, model)
|
||||||
elif model.config.model_type == "qwen":
|
elif model.config.model_type == "qwen":
|
||||||
if hasattr(model.config, "visual"):
|
if hasattr(model.config, "visual"):
|
||||||
# for Qwen-VL-Chat
|
# for Qwen-VL-Chat
|
||||||
|
|
|
||||||
|
|
@ -37,7 +37,7 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
""" PyTorch InternLM model."""
|
""" PyTorch InternLM model."""
|
||||||
import math
|
import math
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.checkpoint
|
import torch.utils.checkpoint
|
||||||
|
|
@ -47,9 +47,13 @@ from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||||
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||||
|
from ipex_llm.transformers.models.utils import update_past_key_value
|
||||||
|
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -347,6 +351,7 @@ def internlm_xcomposser2_attention_forward(
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
bsz, q_len, _ = hidden_states.size()
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
|
||||||
qkv_states = self.wqkv(hidden_states)
|
qkv_states = self.wqkv(hidden_states)
|
||||||
qkv_states = add_lora(hidden_states, qkv_states, im_mask, self.wqkv_lora_scaling,
|
qkv_states = add_lora(hidden_states, qkv_states, im_mask, self.wqkv_lora_scaling,
|
||||||
|
|
@ -375,26 +380,45 @@ def internlm_xcomposser2_attention_forward(
|
||||||
query_states, key_states = apply_rotary_pos_emb(
|
query_states, key_states = apply_rotary_pos_emb(
|
||||||
query_states, key_states, cos, sin, position_ids, "internlm")
|
query_states, key_states, cos, sin, position_ids, "internlm")
|
||||||
|
|
||||||
if past_key_value is not None:
|
# IPEX-LLM OPT: kv cache and quantzie kv cache
|
||||||
# reuse k, v, self_attention
|
use_quantize_kv = use_quantize_kv_cache(self.wqkv, hidden_states)
|
||||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
key_states, value_states = update_past_key_value(
|
||||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
past_key_value, key_states, value_states,
|
||||||
|
kv_seq_len, use_quantize_kv, device
|
||||||
|
)
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
# IPEX-LLM OPT: sdp
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||||
|
import linear_q4_0
|
||||||
|
if use_quantize_kv:
|
||||||
|
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||||
|
attention_mask)
|
||||||
|
else:
|
||||||
|
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||||
|
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||||
|
import linear_q4_0
|
||||||
|
if use_quantize_kv:
|
||||||
|
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||||
|
else:
|
||||||
|
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||||
|
else:
|
||||||
|
if use_quantize_kv:
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states, key_states.transpose(
|
attn_weights = torch.matmul(query_states,
|
||||||
2, 3)) / math.sqrt(self.head_dim)
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
attn_weights = attn_weights + attention_mask
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
# upcast attention to fp32
|
# upcast attention to fp32
|
||||||
attn_weights = nn.functional.softmax(
|
attn_weights = nn.functional.softmax(attn_weights,
|
||||||
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
@ -423,3 +447,66 @@ def internlm_xcomposser2_mlp_forward(
|
||||||
w2 = self.w2(x)
|
w2 = self.w2(x)
|
||||||
w2 = add_lora(x, w2, im_mask, self.w2_lora_scaling, self.w2_Plora_A, self.w2_Plora_B)
|
w2 = add_lora(x, w2, im_mask, self.w2_lora_scaling, self.w2_Plora_A, self.w2_Plora_B)
|
||||||
return w2
|
return w2
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def internlm_xcomposser2_chat(
|
||||||
|
self,
|
||||||
|
tokenizer,
|
||||||
|
query: str,
|
||||||
|
image: torch.Tensor = None,
|
||||||
|
history: List[Tuple[str, str]]=[],
|
||||||
|
streamer=None,
|
||||||
|
max_new_tokens: int = 1024,
|
||||||
|
do_sample: bool = True,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
top_p: float = 0.8,
|
||||||
|
repetition_penalty: float=1.005,
|
||||||
|
meta_instruction:
|
||||||
|
str = ('You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
|
||||||
|
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model'
|
||||||
|
'that is developed by Shanghai AI Laboratory (上海人工智能实验室).'
|
||||||
|
'It is designed to be helpful, honest, and harmless.\n'
|
||||||
|
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the'
|
||||||
|
'language chosen by the user such as English and 中文.\n'
|
||||||
|
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating'
|
||||||
|
'responses effectively based on the provided image.'),
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
if image is None:
|
||||||
|
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
||||||
|
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).bool()
|
||||||
|
else:
|
||||||
|
image = self.encode_img(image)
|
||||||
|
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image,
|
||||||
|
history, meta_instruction)
|
||||||
|
inputs = {
|
||||||
|
k: v.to(self.device)
|
||||||
|
for k, v in inputs.items() if torch.is_tensor(v)
|
||||||
|
}
|
||||||
|
im_mask = im_mask.to(self.device)
|
||||||
|
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
||||||
|
eos_token_id = [
|
||||||
|
tokenizer.eos_token_id,
|
||||||
|
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
|
||||||
|
]
|
||||||
|
outputs = self.generate(
|
||||||
|
**inputs,
|
||||||
|
streamer=streamer,
|
||||||
|
max_new_tokens=max_new_tokens,
|
||||||
|
do_sample=do_sample,
|
||||||
|
temperature=temperature,
|
||||||
|
top_p=top_p,
|
||||||
|
eos_token_id=eos_token_id,
|
||||||
|
repetition_penalty=repetition_penalty,
|
||||||
|
im_mask=im_mask,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
if image is None:
|
||||||
|
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
||||||
|
else:
|
||||||
|
outputs = outputs[0].cpu().tolist()
|
||||||
|
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||||
|
response = response.split('[UNUSED_TOKEN_145]')[0]
|
||||||
|
history = history + [(query, response)]
|
||||||
|
return response, history
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue