Langchain readme (#10348)
* update langchain readme * update readme * create new README * Update README_nativeint4.md
This commit is contained in:
parent
7a621a4db0
commit
370c52090c
2 changed files with 171 additions and 98 deletions
|
|
@ -1,11 +1,13 @@
|
||||||
# Langchain examples
|
## Langchain Examples
|
||||||
|
|
||||||
The examples here show how to use langchain with `bigdl-llm`.
|
This folder contains examples showcasing how to use `langchain` with `bigdl`.
|
||||||
|
|
||||||
## Install bigdl-llm
|
### Install BigDL
|
||||||
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
|
|
||||||
|
Ensure `bigdl-llm` is installed by following the [BigDL-LLM Installation Guide](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
|
||||||
|
|
||||||
|
### Install Dependences Required by the Examples
|
||||||
|
|
||||||
## Install Required Dependencies for langchain examples.
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install langchain==0.0.184
|
pip install langchain==0.0.184
|
||||||
|
|
@ -14,115 +16,58 @@ pip install -U pandas==2.0.3
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Convert Models using bigdl-llm
|
### Example: Chat
|
||||||
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
|
|
||||||
|
|
||||||
|
The chat example ([chat.py](./transformers_int4/chat.py)) shows how to use `LLMChain` to build a chat pipeline.
|
||||||
|
|
||||||
## Run the examples
|
To run the example, execute the following command in the current directory:
|
||||||
|
|
||||||
### 1. Streaming Chat
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
|
python transformers_int4/chat.py -m <path_to_model> [-q <your_question>]
|
||||||
```
|
```
|
||||||
arguments info:
|
> Note: if `-q` is not specified, it will use `What is AI` by default.
|
||||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
|
||||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
||||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
|
||||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
||||||
|
|
||||||
### 2. Question Answering over Docs
|
### Example: RAG (Retrival Augmented Generation)
|
||||||
```bash
|
|
||||||
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
|
|
||||||
```
|
|
||||||
arguments info:
|
|
||||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
|
|
||||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
||||||
- `-i DOC_PATH`: **required**, path to the input document
|
|
||||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
|
||||||
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
|
||||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
||||||
|
|
||||||
### 3. Voice Assistant
|
The RAG example ([rag.py](./transformers_int4/docqa.py)) shows how to load the input text into vector database, and then use `load_qa_chain` to build a retrival pipeline.
|
||||||
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
|
|
||||||
|
|
||||||
Some extra dependencies are required to be installed for this example.
|
To run the example, execute the following command in the current directory:
|
||||||
```bash
|
|
||||||
pip install SpeechRecognition
|
|
||||||
pip install pyttsx3
|
|
||||||
pip install PyAudio
|
|
||||||
pip install whisper.ai
|
|
||||||
pip install soundfile
|
|
||||||
```
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
|
python transformers_int4/rag.py -m <path_to_model> [-q <your_question>] [-i <path_to_input_txt>]
|
||||||
```
|
```
|
||||||
|
> Note: If `-i` is not specified, it will use a short introduction to Big-DL as input by default. if `-q` is not specified, `What is BigDL?` will be used by default.
|
||||||
|
|
||||||
arguments info:
|
|
||||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
|
||||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
||||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
||||||
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
|
|
||||||
|
|
||||||
When you see output says
|
### Example: Math
|
||||||
> listening now...
|
|
||||||
|
|
||||||
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
|
The math example ([math.py](./transformers_int4/llm_math.py)) shows how to build a chat pipeline specialized in solving math questions. For example, you can ask `What is 13 raised to the .3432 power?`
|
||||||
|
|
||||||
#### Known Issues
|
To run the exmaple, execute the following command in the current directory:
|
||||||
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
|
|
||||||
```python
|
|
||||||
import pyaudio
|
|
||||||
import speech_recognition as sr
|
|
||||||
|
|
||||||
CHUNK = 1024
|
|
||||||
FORMAT = pyaudio.paInt16
|
|
||||||
CHANNELS = 1 # The desired number of input channels
|
|
||||||
RATE = 16000 # The desired rate (in Hz)
|
|
||||||
RECORD_SECONDS = 10 # Recording time (in second)
|
|
||||||
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
|
|
||||||
p = pyaudio.PyAudio()
|
|
||||||
|
|
||||||
stream = p.open(format=FORMAT,
|
|
||||||
channels=CHANNELS,
|
|
||||||
rate=RATE,
|
|
||||||
input=True,
|
|
||||||
frames_per_buffer=CHUNK)
|
|
||||||
|
|
||||||
print("*"*10, "Listening\n")
|
|
||||||
frames = []
|
|
||||||
data =0
|
|
||||||
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
|
||||||
data = stream.read(CHUNK) ## <class 'bytes'> ,exception_on_overflow = False
|
|
||||||
frames.append(data) ## <class 'list'>
|
|
||||||
print("*"*10, "Stop recording\n")
|
|
||||||
|
|
||||||
stream.stop_stream()
|
|
||||||
stream.close()
|
|
||||||
p.terminate()
|
|
||||||
|
|
||||||
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
|
|
||||||
wf.setnchannels(CHANNELS)
|
|
||||||
wf.setsampwidth(p.get_sample_size(FORMAT))
|
|
||||||
wf.setframerate(RATE)
|
|
||||||
wf.writeframes(b''.join(frames))
|
|
||||||
wf.close()
|
|
||||||
|
|
||||||
r = sr.Recognizer()
|
|
||||||
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
|
|
||||||
audio = r.record(source1) # read the entire audio file
|
|
||||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
|
||||||
```
|
|
||||||
|
|
||||||
### 4. Math
|
|
||||||
|
|
||||||
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
|
python transformers_int4/llm_math.py -m <path_to_model> [-q <your_question>]
|
||||||
```
|
```
|
||||||
arguments info:
|
> Note: if `-q` is not specified, it will use `What is 13 raised to the .3432 power?` by default.
|
||||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
|
|
||||||
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
|
|
||||||
|
|
||||||
|
|
||||||
|
### Example: Voice Assistant
|
||||||
|
|
||||||
|
The voice assistant example ([voiceassistant.py](./transformers_int4/voiceassistant.py)) showcases how to use langchain to build a pipeline that takes in your speech as input in realtime, use an ASR model (e.g. [Whisper-Medium](https://huggingface.co/openai/whisper-medium)) to turn speech into text, and then feed the text into large language model to get response.
|
||||||
|
|
||||||
|
To run the exmaple, execute the following command in the current directory:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python transformers_int4/voiceassistant.py -m <path_to_model> [-q <your_question>]
|
||||||
|
```
|
||||||
|
**Runtime Arguments Explained**:
|
||||||
|
- `-m MODEL_PATH`: **Required**, the path to the
|
||||||
|
- `-r RECOGNITION_MODEL_PATH`: **Required**, the path to the huggingface speech recognition model
|
||||||
|
- `-x MAX_NEW_TOKENS`: the max new tokens of model tokens input
|
||||||
|
- `-l LANGUAGE`: you can specify a language such as "english" or "chinese"
|
||||||
|
- `-d True|False`: whether the model path specified in -m is saved low bit model.
|
||||||
|
|
||||||
|
|
||||||
|
### Legacy (Native INT4 examples)
|
||||||
|
|
||||||
|
BigDL also provides langchain integrations using native INT4 mode. Those examples can be foud in [native_int4](./native_int4/) folder. For detailed instructions of settting up and running `native_int4` examples, refer to [Native INT4 Examples README](./README_nativeint4.md).
|
||||||
|
|
|
||||||
128
python/llm/example/CPU/LangChain/README_nativeint4.md
Normal file
128
python/llm/example/CPU/LangChain/README_nativeint4.md
Normal file
|
|
@ -0,0 +1,128 @@
|
||||||
|
# Langchain Native INT4 examples
|
||||||
|
|
||||||
|
The examples in [native_int4](./native_int4) folder show how to use langchain with `bigdl-llm` native INT4 mode.
|
||||||
|
|
||||||
|
## Install bigdl-llm
|
||||||
|
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
|
||||||
|
|
||||||
|
## Install Required Dependencies for langchain examples.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install langchain==0.0.184
|
||||||
|
pip install -U chromadb==0.3.25
|
||||||
|
pip install -U pandas==2.0.3
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Convert Models using bigdl-llm
|
||||||
|
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
|
||||||
|
|
||||||
|
|
||||||
|
## Run the examples
|
||||||
|
|
||||||
|
### 1. Streaming Chat
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
|
||||||
|
```
|
||||||
|
arguments info:
|
||||||
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
||||||
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||||
|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||||
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||||
|
|
||||||
|
### 2. Question Answering over Docs
|
||||||
|
```bash
|
||||||
|
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
|
||||||
|
```
|
||||||
|
arguments info:
|
||||||
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
|
||||||
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||||
|
- `-i DOC_PATH`: **required**, path to the input document
|
||||||
|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||||
|
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
||||||
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||||
|
|
||||||
|
### 3. Voice Assistant
|
||||||
|
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
|
||||||
|
|
||||||
|
Some extra dependencies are required to be installed for this example.
|
||||||
|
```bash
|
||||||
|
pip install SpeechRecognition
|
||||||
|
pip install pyttsx3
|
||||||
|
pip install PyAudio
|
||||||
|
pip install whisper.ai
|
||||||
|
pip install soundfile
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
|
||||||
|
```
|
||||||
|
|
||||||
|
arguments info:
|
||||||
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
||||||
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||||
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||||
|
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
|
||||||
|
|
||||||
|
When you see output says
|
||||||
|
> listening now...
|
||||||
|
|
||||||
|
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
|
||||||
|
|
||||||
|
#### Known Issues
|
||||||
|
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
|
||||||
|
```python
|
||||||
|
import pyaudio
|
||||||
|
import speech_recognition as sr
|
||||||
|
|
||||||
|
CHUNK = 1024
|
||||||
|
FORMAT = pyaudio.paInt16
|
||||||
|
CHANNELS = 1 # The desired number of input channels
|
||||||
|
RATE = 16000 # The desired rate (in Hz)
|
||||||
|
RECORD_SECONDS = 10 # Recording time (in second)
|
||||||
|
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
|
||||||
|
p = pyaudio.PyAudio()
|
||||||
|
|
||||||
|
stream = p.open(format=FORMAT,
|
||||||
|
channels=CHANNELS,
|
||||||
|
rate=RATE,
|
||||||
|
input=True,
|
||||||
|
frames_per_buffer=CHUNK)
|
||||||
|
|
||||||
|
print("*"*10, "Listening\n")
|
||||||
|
frames = []
|
||||||
|
data =0
|
||||||
|
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
||||||
|
data = stream.read(CHUNK) ## <class 'bytes'> ,exception_on_overflow = False
|
||||||
|
frames.append(data) ## <class 'list'>
|
||||||
|
print("*"*10, "Stop recording\n")
|
||||||
|
|
||||||
|
stream.stop_stream()
|
||||||
|
stream.close()
|
||||||
|
p.terminate()
|
||||||
|
|
||||||
|
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
|
||||||
|
wf.setnchannels(CHANNELS)
|
||||||
|
wf.setsampwidth(p.get_sample_size(FORMAT))
|
||||||
|
wf.setframerate(RATE)
|
||||||
|
wf.writeframes(b''.join(frames))
|
||||||
|
wf.close()
|
||||||
|
|
||||||
|
r = sr.Recognizer()
|
||||||
|
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
|
||||||
|
audio = r.record(source1) # read the entire audio file
|
||||||
|
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Math
|
||||||
|
|
||||||
|
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
|
||||||
|
```
|
||||||
|
arguments info:
|
||||||
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
|
||||||
|
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
|
||||||
|
|
||||||
Loading…
Reference in a new issue