[LLM]Arc starcoder example (#8814)
* arc starcoder example init * add log * meet comments
This commit is contained in:
		
							parent
							
								
									6a902b892e
								
							
						
					
					
						commit
						35fdf94031
					
				
					 4 changed files with 167 additions and 19 deletions
				
			
		| 
						 | 
					@ -43,34 +43,32 @@ Arguments info:
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
### HUMAN:
 | 
					<s>[INST] <<SYS>>
 | 
				
			||||||
What is AI?
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
### RESPONSE:
 | 
					<</SYS>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					What is AI? [/INST]
 | 
				
			||||||
-------------------- Output --------------------
 | 
					-------------------- Output --------------------
 | 
				
			||||||
### HUMAN:
 | 
					[INST] <<SYS>>
 | 
				
			||||||
What is AI?
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
### RESPONSE:
 | 
					<</SYS>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
 | 
					What is AI? [/INST]  Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
 | 
					#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
### HUMAN:
 | 
					<s>[INST] <<SYS>>
 | 
				
			||||||
What is AI?
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
### RESPONSE:
 | 
					<</SYS>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					What is AI? [/INST]
 | 
				
			||||||
-------------------- Output --------------------
 | 
					-------------------- Output --------------------
 | 
				
			||||||
### HUMAN:
 | 
					[INST] <<SYS>>
 | 
				
			||||||
What is AI?
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
### RESPONSE:
 | 
					<</SYS>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving,
 | 
					What is AI? [/INST]  AI stands for Artificial Intelligence, which refers to the ability of machines or computers to perform tasks that would typically require human intelligence, such as
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -24,12 +24,22 @@ from transformers import LlamaTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
					# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
				
			||||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
 | 
					DEFAULT_SYSTEM_PROMPT = """\
 | 
				
			||||||
{prompt}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
### RESPONSE:
 | 
					 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
				
			||||||
 | 
					               system_prompt: str) -> str:
 | 
				
			||||||
 | 
					    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
				
			||||||
 | 
					    # The first user input is _not_ stripped
 | 
				
			||||||
 | 
					    do_strip = False
 | 
				
			||||||
 | 
					    for user_input, response in chat_history:
 | 
				
			||||||
 | 
					        user_input = user_input.strip() if do_strip else user_input
 | 
				
			||||||
 | 
					        do_strip = True
 | 
				
			||||||
 | 
					        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
				
			||||||
 | 
					    message = message.strip() if do_strip else message
 | 
				
			||||||
 | 
					    texts.append(f'{message} [/INST]')
 | 
				
			||||||
 | 
					    return ''.join(texts)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
				
			||||||
| 
						 | 
					@ -56,7 +66,7 @@ if __name__ == '__main__':
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Generate predicted tokens
 | 
					    # Generate predicted tokens
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,77 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
 | 
					StarCoder_PROMPT_FORMAT = "{prompt}"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for StarCoder model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the StarCoder to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="def print_hello_world():",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = StarCoder_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,63 @@
 | 
				
			||||||
 | 
					# StarCoder
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
				
			||||||
 | 
					# you can install specific ipex/torch version for your need
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Run
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For optimal performance on Arc, it is recommended to set several environment variables.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export USE_XETLA=OFF
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bigcode/starcoder'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					#### [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
 | 
				
			||||||
 | 
					The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
 | 
				
			||||||
 | 
					Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
 | 
				
			||||||
 | 
					The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
 | 
				
			||||||
 | 
					Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					    print("Hello World!")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def print_hello_name(name):
 | 
				
			||||||
 | 
					    print(f"Hello {name}!")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def print_
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
		Loading…
	
		Reference in a new issue