[LLM]Arc starcoder example (#8814)

* arc starcoder example init

* add log

* meet comments
This commit is contained in:
Yina Chen 2023-08-28 16:48:00 +08:00 committed by GitHub
parent 6a902b892e
commit 35fdf94031
4 changed files with 167 additions and 19 deletions

View file

@ -43,34 +43,32 @@ Arguments info:
```log ```log
Inference time: xxxx s Inference time: xxxx s
-------------------- Prompt -------------------- -------------------- Prompt --------------------
### HUMAN: <s>[INST] <<SYS>>
What is AI?
### RESPONSE: <</SYS>>
What is AI? [/INST]
-------------------- Output -------------------- -------------------- Output --------------------
### HUMAN: [INST] <<SYS>>
What is AI?
### RESPONSE: <</SYS>>
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
``` ```
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) #### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
```log ```log
Inference time: xxxx s Inference time: xxxx s
-------------------- Prompt -------------------- -------------------- Prompt --------------------
### HUMAN: <s>[INST] <<SYS>>
What is AI?
### RESPONSE: <</SYS>>
What is AI? [/INST]
-------------------- Output -------------------- -------------------- Output --------------------
### HUMAN: [INST] <<SYS>>
What is AI?
### RESPONSE: <</SYS>>
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving, What is AI? [/INST] AI stands for Artificial Intelligence, which refers to the ability of machines or computers to perform tasks that would typically require human intelligence, such as
``` ```

View file

@ -24,12 +24,22 @@ from transformers import LlamaTokenizer
# you could tune the prompt based on your own model, # you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
LLAMA2_PROMPT_FORMAT = """### HUMAN: DEFAULT_SYSTEM_PROMPT = """\
{prompt}
### RESPONSE:
""" """
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
@ -56,7 +66,7 @@ if __name__ == '__main__':
# Generate predicted tokens # Generate predicted tokens
with torch.inference_mode(): with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate # ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids, output = model.generate(input_ids,

View file

@ -0,0 +1,77 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
StarCoder_PROMPT_FORMAT = "{prompt}"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for StarCoder model')
parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
help='The huggingface repo id for the StarCoder to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = StarCoder_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,63 @@
# StarCoder
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bigcode/starcoder'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
```log
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
-------------------- Output --------------------
def print_hello_world():
print("Hello World!")
def print_hello_name(name):
print(f"Hello {name}!")
def print_
```