[LLM]Arc starcoder example (#8814)
* arc starcoder example init * add log * meet comments
This commit is contained in:
parent
6a902b892e
commit
35fdf94031
4 changed files with 167 additions and 19 deletions
|
|
@ -43,34 +43,32 @@ Arguments info:
|
||||||
```log
|
```log
|
||||||
Inference time: xxxx s
|
Inference time: xxxx s
|
||||||
-------------------- Prompt --------------------
|
-------------------- Prompt --------------------
|
||||||
### HUMAN:
|
<s>[INST] <<SYS>>
|
||||||
What is AI?
|
|
||||||
|
|
||||||
### RESPONSE:
|
<</SYS>>
|
||||||
|
|
||||||
|
What is AI? [/INST]
|
||||||
-------------------- Output --------------------
|
-------------------- Output --------------------
|
||||||
### HUMAN:
|
[INST] <<SYS>>
|
||||||
What is AI?
|
|
||||||
|
|
||||||
### RESPONSE:
|
<</SYS>>
|
||||||
|
|
||||||
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
|
What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
|
||||||
```
|
```
|
||||||
|
|
||||||
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
|
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
|
||||||
```log
|
```log
|
||||||
Inference time: xxxx s
|
Inference time: xxxx s
|
||||||
-------------------- Prompt --------------------
|
-------------------- Prompt --------------------
|
||||||
### HUMAN:
|
<s>[INST] <<SYS>>
|
||||||
What is AI?
|
|
||||||
|
|
||||||
### RESPONSE:
|
<</SYS>>
|
||||||
|
|
||||||
|
What is AI? [/INST]
|
||||||
-------------------- Output --------------------
|
-------------------- Output --------------------
|
||||||
### HUMAN:
|
[INST] <<SYS>>
|
||||||
What is AI?
|
|
||||||
|
|
||||||
### RESPONSE:
|
<</SYS>>
|
||||||
|
|
||||||
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving,
|
What is AI? [/INST] AI stands for Artificial Intelligence, which refers to the ability of machines or computers to perform tasks that would typically require human intelligence, such as
|
||||||
```
|
```
|
||||||
|
|
|
||||||
|
|
@ -24,12 +24,22 @@ from transformers import LlamaTokenizer
|
||||||
|
|
||||||
# you could tune the prompt based on your own model,
|
# you could tune the prompt based on your own model,
|
||||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
{prompt}
|
|
||||||
|
|
||||||
### RESPONSE:
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
||||||
|
system_prompt: str) -> str:
|
||||||
|
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
||||||
|
# The first user input is _not_ stripped
|
||||||
|
do_strip = False
|
||||||
|
for user_input, response in chat_history:
|
||||||
|
user_input = user_input.strip() if do_strip else user_input
|
||||||
|
do_strip = True
|
||||||
|
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
||||||
|
message = message.strip() if do_strip else message
|
||||||
|
texts.append(f'{message} [/INST]')
|
||||||
|
return ''.join(texts)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
|
@ -56,7 +66,7 @@ if __name__ == '__main__':
|
||||||
|
|
||||||
# Generate predicted tokens
|
# Generate predicted tokens
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
# ipex model needs a warmup, then inference time can be accurate
|
# ipex model needs a warmup, then inference time can be accurate
|
||||||
output = model.generate(input_ids,
|
output = model.generate(input_ids,
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,77 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
StarCoder_PROMPT_FORMAT = "{prompt}"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for StarCoder model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
|
||||||
|
help='The huggingface repo id for the StarCoder to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.to('xpu')
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = StarCoder_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
|
||||||
|
# ipex model needs a warmup, then inference time can be accurate
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
|
||||||
|
# start inference
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
@ -0,0 +1,63 @@
|
||||||
|
# StarCoder
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Run
|
||||||
|
|
||||||
|
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bigcode/starcoder'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
#### [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
|
||||||
|
```log
|
||||||
|
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
|
||||||
|
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
|
||||||
|
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
|
||||||
|
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
|
||||||
|
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
-------------------- Output --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
print("Hello World!")
|
||||||
|
|
||||||
|
|
||||||
|
def print_hello_name(name):
|
||||||
|
print(f"Hello {name}!")
|
||||||
|
|
||||||
|
|
||||||
|
def print_
|
||||||
|
```
|
||||||
Loading…
Reference in a new issue