Add Qwen2-VL HF GPU example with ModelScope Support (#12606)
* Add qwen2-vl example * complete generate.py & readme * improve lint style * update 1-6 * update main readme * Format and other small fixes --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
		
							parent
							
								
									a1da7908b9
								
							
						
					
					
						commit
						350fae285d
					
				
					 6 changed files with 287 additions and 2 deletions
				
			
		| 
						 | 
					@ -292,7 +292,7 @@ Over 70 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
				
			||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
					| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
				
			||||||
| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
					| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
				
			||||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
					| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
				
			||||||
| Qwen2-VL    || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl)    |
 | 
					| Qwen2-VL    || [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl)    |
 | 
				
			||||||
| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
					| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
				
			||||||
| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
					| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
				
			||||||
| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
					| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -292,7 +292,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
				
			||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
					| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
				
			||||||
| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
					| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) |
 | 
				
			||||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
					| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
				
			||||||
| Qwen2-VL    || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl)    |
 | 
					| Qwen2-VL    || [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl)    |
 | 
				
			||||||
| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
					| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
				
			||||||
| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
					| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
				
			||||||
| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
					| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										149
									
								
								python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,149 @@
 | 
				
			||||||
 | 
					# Qwen2-VL
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					#### 1.1 Installation on Linux
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.11
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
 | 
				
			||||||
 | 
					pip install accelerate==0.33.0
 | 
				
			||||||
 | 
					pip install qwen_vl_utils
 | 
				
			||||||
 | 
					pip install "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope[datasets]==1.21.1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.11 libuv
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
 | 
				
			||||||
 | 
					pip install accelerate==0.33.0
 | 
				
			||||||
 | 
					pip install qwen_vl_utils
 | 
				
			||||||
 | 
					pip install "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope[datasets]==1.21.1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!NOTE]
 | 
				
			||||||
 | 
					> Skip this step if you are running on Windows.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Runtime Configurations
 | 
				
			||||||
 | 
					For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
				
			||||||
 | 
					#### 3.1 Configurations for Linux
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export USE_XETLA=OFF
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Data Center GPU Max Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					export ENABLE_SDP_FUSION=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel iGPU</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 3.2 Configurations for Windows
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel iGPU and Intel Arc™ A-Series Graphics</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!NOTE]
 | 
				
			||||||
 | 
					> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# for Hugging Face model hub
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# for ModelScope model hub
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`.
 | 
				
			||||||
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe this image.'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					图片里有什么?
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					图片里有一个小女孩,她穿着粉红色的条纹连衣裙,手里拿着一个白色的毛绒玩具。背景中有一堵石墙和一些
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					What is in the image?
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					The image shows a young child holding a small white teddy bear dressed in a pink outfit. The child is standing in front of a stone wall with red flowers
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,126 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ipex_llm.transformers import Qwen2VLForConditionalGeneration
 | 
				
			||||||
 | 
					from qwen_vl_utils import process_vision_info
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the Qwen2-VL model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="图片里有什么?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer') 
 | 
				
			||||||
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
 | 
					                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
 | 
				
			||||||
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
				
			||||||
 | 
					                        help="Use models from modelscope")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    if args.modelscope:
 | 
				
			||||||
 | 
					        from modelscope import AutoProcessor
 | 
				
			||||||
 | 
					        model_hub = 'modelscope'
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from transformers import AutoProcessor
 | 
				
			||||||
 | 
					        model_hub = 'huggingface'
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                            load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                            optimize_model=True,
 | 
				
			||||||
 | 
					                                                            trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                            modules_to_not_convert=["vision"],
 | 
				
			||||||
 | 
					                                                            use_cache=True,
 | 
				
			||||||
 | 
					                                                            model_hub=model_hub)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Use .float() for better output, and use .half() for better speed
 | 
				
			||||||
 | 
					    model = model.half().to("xpu")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # The default range for the number of visual tokens per image in the model is 4-16384.
 | 
				
			||||||
 | 
					    # You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280,
 | 
				
			||||||
 | 
					    # to balance speed and memory usage.
 | 
				
			||||||
 | 
					    min_pixels = 256*28*28
 | 
				
			||||||
 | 
					    max_pixels = 1280*28*28
 | 
				
			||||||
 | 
					    processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    prompt = args.prompt
 | 
				
			||||||
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        messages = [
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "role": "user",
 | 
				
			||||||
 | 
					                "content": [
 | 
				
			||||||
 | 
					                    {
 | 
				
			||||||
 | 
					                        "type": "image",
 | 
				
			||||||
 | 
					                        "image": image_path,
 | 
				
			||||||
 | 
					                    },
 | 
				
			||||||
 | 
					                    {"type": "text", "text": prompt},
 | 
				
			||||||
 | 
					                ],
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        text = processor.apply_chat_template(
 | 
				
			||||||
 | 
					            messages, tokenize=False, add_generation_prompt=True
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        image_inputs, video_inputs = process_vision_info(messages)
 | 
				
			||||||
 | 
					        inputs = processor(
 | 
				
			||||||
 | 
					            text=[text],
 | 
				
			||||||
 | 
					            images=image_inputs,
 | 
				
			||||||
 | 
					            videos=video_inputs,
 | 
				
			||||||
 | 
					            padding=True,
 | 
				
			||||||
 | 
					            return_tensors="pt",
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        inputs = inputs.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        generated_ids = model.generate(
 | 
				
			||||||
 | 
					            **inputs,
 | 
				
			||||||
 | 
					            max_new_tokens=args.n_predict
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        generated_ids = model.generate(
 | 
				
			||||||
 | 
					            **inputs,
 | 
				
			||||||
 | 
					            max_new_tokens=args.n_predict
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        generated_ids = generated_ids.cpu()
 | 
				
			||||||
 | 
					        generated_ids = [
 | 
				
			||||||
 | 
					            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					        print(image_path)
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(response)
 | 
				
			||||||
| 
						 | 
					@ -21,5 +21,10 @@ from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, \
 | 
				
			||||||
        AutoModelForSequenceClassification, AutoModelForMaskedLM, \
 | 
					        AutoModelForSequenceClassification, AutoModelForMaskedLM, \
 | 
				
			||||||
        AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
 | 
					        AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
 | 
				
			||||||
        AutoModelForTokenClassification
 | 
					        AutoModelForTokenClassification
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import transformers
 | 
				
			||||||
 | 
					if transformers.__version__ >= '4.45.0':
 | 
				
			||||||
 | 
					    from .model import Qwen2VLForConditionalGeneration
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .modelling_bigdl import *
 | 
					from .modelling_bigdl import *
 | 
				
			||||||
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
 | 
					from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -826,3 +826,8 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class AutoModelForTokenClassification(_BaseAutoModelClass):
 | 
					class AutoModelForTokenClassification(_BaseAutoModelClass):
 | 
				
			||||||
    HF_Model = transformers.AutoModelForTokenClassification
 | 
					    HF_Model = transformers.AutoModelForTokenClassification
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if transformers.__version__ >= '4.45.0':
 | 
				
			||||||
 | 
					    class Qwen2VLForConditionalGeneration(_BaseAutoModelClass):
 | 
				
			||||||
 | 
					        HF_Model = transformers.Qwen2VLForConditionalGeneration
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue