LLM: first push gptneox pybinding (#8234)
* first push gptneox pybinding * fix * fix code style and add license --------- Co-authored-by: binbin <binbin1.deng@intel.com>
This commit is contained in:
		
							parent
							
								
									3a9aa23835
								
							
						
					
					
						commit
						350d31a472
					
				
					 5 changed files with 2239 additions and 0 deletions
				
			
		
							
								
								
									
										20
									
								
								python/llm/src/bigdl/llm/ggml/model/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								python/llm/src/bigdl/llm/ggml/model/__init__.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,20 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
				
			||||||
 | 
					# physically located elsewhere.
 | 
				
			||||||
 | 
					# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
				
			||||||
 | 
					# only search the first bigdl package and end up finding only one sub-package.
 | 
				
			||||||
							
								
								
									
										23
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/__init__.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,23 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
				
			||||||
 | 
					# physically located elsewhere.
 | 
				
			||||||
 | 
					# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
				
			||||||
 | 
					# only search the first bigdl package and end up finding only one sub-package.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from .gptneox_cpp import *
 | 
				
			||||||
 | 
					from .gptneox import *
 | 
				
			||||||
							
								
								
									
										1229
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1229
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox.py
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										823
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_cpp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										823
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_cpp.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,823 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# ===========================================================================
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# This file is adapted from
 | 
				
			||||||
 | 
					# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama_cpp.py
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# MIT License
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright (c) 2023 Andrei Betlen
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
				
			||||||
 | 
					# of this software and associated documentation files (the "Software"), to deal
 | 
				
			||||||
 | 
					# in the Software without restriction, including without limitation the rights
 | 
				
			||||||
 | 
					# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
				
			||||||
 | 
					# copies of the Software, and to permit persons to whom the Software is
 | 
				
			||||||
 | 
					# furnished to do so, subject to the following conditions:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# The above copyright notice and this permission notice shall be included in all
 | 
				
			||||||
 | 
					# copies or substantial portions of the Software.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
				
			||||||
 | 
					# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
				
			||||||
 | 
					# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
				
			||||||
 | 
					# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
				
			||||||
 | 
					# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
				
			||||||
 | 
					# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
				
			||||||
 | 
					# SOFTWARE.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
				
			||||||
 | 
					# physically located elsewhere.
 | 
				
			||||||
 | 
					# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
				
			||||||
 | 
					# only search the first bigdl package and end up finding only one sub-package.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import ctypes
 | 
				
			||||||
 | 
					from ctypes import (
 | 
				
			||||||
 | 
					    c_int,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_char_p,
 | 
				
			||||||
 | 
					    c_void_p,
 | 
				
			||||||
 | 
					    c_bool,
 | 
				
			||||||
 | 
					    POINTER,
 | 
				
			||||||
 | 
					    _Pointer,  # type: ignore
 | 
				
			||||||
 | 
					    Structure,
 | 
				
			||||||
 | 
					    Array,
 | 
				
			||||||
 | 
					    c_uint8,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					import pathlib
 | 
				
			||||||
 | 
					from bigdl.llm.utils.common import invalidInputError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Load the library
 | 
				
			||||||
 | 
					def _load_shared_library(lib_base_name: str):
 | 
				
			||||||
 | 
					    # Determine the file extension based on the platform
 | 
				
			||||||
 | 
					    if sys.platform.startswith("linux"):
 | 
				
			||||||
 | 
					        lib_ext = ".so"
 | 
				
			||||||
 | 
					    elif sys.platform == "darwin":
 | 
				
			||||||
 | 
					        lib_ext = ".so"
 | 
				
			||||||
 | 
					    elif sys.platform == "win32":
 | 
				
			||||||
 | 
					        lib_ext = ".dll"
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        invalidInputError(False, "Unsupported platform.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Construct the paths to the possible shared library names (python/llm/src/bigdl/llm/libs)
 | 
				
			||||||
 | 
					    _base_path = pathlib.Path(__file__).parent.parent.parent.parent.resolve()
 | 
				
			||||||
 | 
					    _base_path = _base_path / 'libs'
 | 
				
			||||||
 | 
					    # Searching for the library in the current directory under the name "libgptneox" (default name
 | 
				
			||||||
 | 
					    # for gptneoxcpp) and "gptneox" (default name for this repo)
 | 
				
			||||||
 | 
					    _lib_paths = [
 | 
				
			||||||
 | 
					        _base_path / f"lib{lib_base_name}{lib_ext}",
 | 
				
			||||||
 | 
					        _base_path / f"{lib_base_name}{lib_ext}",
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if "GPTNEOX_CPP_LIB" in os.environ:
 | 
				
			||||||
 | 
					        lib_base_name = os.environ["GPTNEOX_CPP_LIB"]
 | 
				
			||||||
 | 
					        _lib = pathlib.Path(lib_base_name)
 | 
				
			||||||
 | 
					        _base_path = _lib.parent.resolve()
 | 
				
			||||||
 | 
					        _lib_paths = [_lib.resolve()]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cdll_args = dict()  # type: ignore
 | 
				
			||||||
 | 
					    # Add the library directory to the DLL search path on Windows (if needed)
 | 
				
			||||||
 | 
					    if sys.platform == "win32" and sys.version_info >= (3, 8):
 | 
				
			||||||
 | 
					        os.add_dll_directory(str(_base_path))
 | 
				
			||||||
 | 
					        cdll_args["winmode"] = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Try to load the shared library, handling potential errors
 | 
				
			||||||
 | 
					    for _lib_path in _lib_paths:
 | 
				
			||||||
 | 
					        if _lib_path.exists():
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                return ctypes.CDLL(str(_lib_path), **cdll_args)
 | 
				
			||||||
 | 
					            except Exception as e:
 | 
				
			||||||
 | 
					                invalidInputError(False, f"Failed to load shared library '{_lib_path}': {e}.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    invalidInputError(False, f"Shared library with base name '{lib_base_name}' not found.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Specify the base name of the shared library to load
 | 
				
			||||||
 | 
					_lib_base_name = "gptneox"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Load the library
 | 
				
			||||||
 | 
					_lib = _load_shared_library(_lib_base_name)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# C types
 | 
				
			||||||
 | 
					GPTNEOX_FILE_VERSION = c_int(1)
 | 
				
			||||||
 | 
					GPTNEOX_FILE_MAGIC = b"ggjt"
 | 
				
			||||||
 | 
					GPTNEOX_FILE_MAGIC_UNVERSIONED = b"ggml"
 | 
				
			||||||
 | 
					# GPTNEOX_SESSION_MAGIC = b"ggsn"
 | 
				
			||||||
 | 
					# GPTNEOX_SESSION_VERSION = c_int(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_context_p = c_void_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_token = c_int
 | 
				
			||||||
 | 
					gptneox_token_p = POINTER(gptneox_token)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class gptneox_token_data(Structure):
 | 
				
			||||||
 | 
					    _fields_ = [
 | 
				
			||||||
 | 
					        ("id", gptneox_token),  # token id
 | 
				
			||||||
 | 
					        ("logit", c_float),  # log-odds of the token
 | 
				
			||||||
 | 
					        ("p", c_float),  # probability of the token
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_token_data_p = POINTER(gptneox_token_data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class gptneox_token_data_array(Structure):
 | 
				
			||||||
 | 
					    _fields_ = [
 | 
				
			||||||
 | 
					        ("data", gptneox_token_data_p),
 | 
				
			||||||
 | 
					        ("size", c_size_t),
 | 
				
			||||||
 | 
					        ("sorted", c_bool),
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_token_data_array_p = POINTER(gptneox_token_data_array)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class gptneox_context_params(Structure):
 | 
				
			||||||
 | 
					    _fields_ = [
 | 
				
			||||||
 | 
					        ("n_ctx", c_int),  # text context
 | 
				
			||||||
 | 
					        ("n_parts", c_int),  # -1 for default
 | 
				
			||||||
 | 
					        # ("n_gpu_layers", c_int),  # number of layers to store in VRAM
 | 
				
			||||||
 | 
					        ("seed", c_int),  # RNG seed, 0 for random
 | 
				
			||||||
 | 
					        ("f16_kv", c_bool),  # use fp16 for KV cache
 | 
				
			||||||
 | 
					        (
 | 
				
			||||||
 | 
					            "logits_all",
 | 
				
			||||||
 | 
					            c_bool,
 | 
				
			||||||
 | 
					        ),  # the gptneox_eval() call computes all logits, not just the last one
 | 
				
			||||||
 | 
					        ("vocab_only", c_bool),  # only load the vocabulary, no weights
 | 
				
			||||||
 | 
					        ("use_mmap", c_bool),  # use mmap if possible
 | 
				
			||||||
 | 
					        ("use_mlock", c_bool),  # force system to keep model in RAM
 | 
				
			||||||
 | 
					        ("embedding", c_bool),  # embedding mode only
 | 
				
			||||||
 | 
					        # called with a progress value between 0 and 1, pass NULL to disable
 | 
				
			||||||
 | 
					        ("progress_callback", gptneox_progress_callback),
 | 
				
			||||||
 | 
					        # context pointer passed to the progress callback
 | 
				
			||||||
 | 
					        ("progress_callback_user_data", c_void_p),
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gptneox_context_params_p = POINTER(gptneox_context_params)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_ALL_F32 = c_int(0)
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_F16 = c_int(1)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q4_0 = c_int(2)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q4_1 = c_int(3)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(
 | 
				
			||||||
 | 
					    4
 | 
				
			||||||
 | 
					)  # tok_embeddings.weight and output.weight are F16
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q4_2 = c_int(5)  # except 1d tensors
 | 
				
			||||||
 | 
					# GPTNEOX_FTYPE_MOSTYL_Q4_3 = c_int(6)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q8_0 = c_int(7)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q5_0 = c_int(8)  # except 1d tensors
 | 
				
			||||||
 | 
					GPTNEOX_FTYPE_MOSTLY_Q5_1 = c_int(9)  # except 1d tensors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Misc
 | 
				
			||||||
 | 
					c_float_p = POINTER(c_float)
 | 
				
			||||||
 | 
					c_uint8_p = POINTER(c_uint8)
 | 
				
			||||||
 | 
					c_size_t_p = POINTER(c_size_t)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Functions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_context_default_params() -> gptneox_context_params:
 | 
				
			||||||
 | 
					    return _lib.gptneox_context_default_params()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_context_default_params.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_context_default_params.restype = gptneox_context_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_mmap_supported() -> bool:
 | 
				
			||||||
 | 
					    return _lib.gptneox_mmap_supported()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_mmap_supported.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_mmap_supported.restype = c_bool
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_mlock_supported() -> bool:
 | 
				
			||||||
 | 
					    return _lib.gptneox_mlock_supported()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_mlock_supported.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_mlock_supported.restype = c_bool
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Various functions for loading a ggml gptneox model.
 | 
				
			||||||
 | 
					# Allocate (almost) all memory needed for the model.
 | 
				
			||||||
 | 
					# Return NULL on failure
 | 
				
			||||||
 | 
					def gptneox_init_from_file(
 | 
				
			||||||
 | 
					    path_model: bytes, params: gptneox_context_params
 | 
				
			||||||
 | 
					) -> gptneox_context_p:
 | 
				
			||||||
 | 
					    return _lib.gptneox_init_from_file(path_model, params)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_init_from_file.argtypes = [c_char_p, gptneox_context_params]
 | 
				
			||||||
 | 
					_lib.gptneox_init_from_file.restype = gptneox_context_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Frees all allocated memory
 | 
				
			||||||
 | 
					def gptneox_free(ctx: gptneox_context_p):
 | 
				
			||||||
 | 
					    _lib.gptneox_free(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_free.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_free.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# TODO: not great API - very likely to change
 | 
				
			||||||
 | 
					# Returns 0 on success
 | 
				
			||||||
 | 
					# nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(),
 | 
				
			||||||
 | 
					# else the number given
 | 
				
			||||||
 | 
					def gptneox_model_quantize(
 | 
				
			||||||
 | 
					    fname_inp: bytes, fname_out: bytes, ftype: c_int, nthread: c_int
 | 
				
			||||||
 | 
					) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_model_quantize(fname_inp, fname_out, ftype, nthread)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_model_quantize.argtypes = [c_char_p, c_char_p, c_int, c_int]
 | 
				
			||||||
 | 
					_lib.gptneox_model_quantize.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_model_copy(
 | 
				
			||||||
 | 
					    fname_inp: bytes, fname_out: bytes, ftype: c_int
 | 
				
			||||||
 | 
					) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_model_copy(fname_inp, fname_out, ftype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_model_copy.argtypes = [c_char_p, c_char_p, c_int]
 | 
				
			||||||
 | 
					_lib.gptneox_model_copy.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Apply a LoRA adapter to a loaded model
 | 
				
			||||||
 | 
					# path_base_model is the path to a higher quality model to use as a base for
 | 
				
			||||||
 | 
					# the layers modified by the adapter. Can be NULL to use the current loaded model.
 | 
				
			||||||
 | 
					# The model needs to be reloaded before applying a new adapter, otherwise the adapter
 | 
				
			||||||
 | 
					# will be applied on top of the previous one
 | 
				
			||||||
 | 
					# Returns 0 on success
 | 
				
			||||||
 | 
					def gptneox_apply_lora_from_file(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    path_lora: c_char_p,
 | 
				
			||||||
 | 
					    path_base_model: c_char_p,
 | 
				
			||||||
 | 
					    n_threads: c_int,
 | 
				
			||||||
 | 
					) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_apply_lora_from_file.argtypes = [gptneox_context_p, c_char_p, c_char_p, c_int]
 | 
				
			||||||
 | 
					_lib.gptneox_apply_lora_from_file.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Returns the number of tokens in the KV cache
 | 
				
			||||||
 | 
					def gptneox_get_kv_cache_token_count(ctx: gptneox_context_p) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_get_kv_cache_token_count(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_get_kv_cache_token_count.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_get_kv_cache_token_count.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Sets the current rng seed.
 | 
				
			||||||
 | 
					def gptneox_set_rng_seed(ctx: gptneox_context_p, seed: c_int):
 | 
				
			||||||
 | 
					    return _lib.gptneox_set_rng_seed(ctx, seed)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_set_rng_seed.argtypes = [gptneox_context_p, c_int]
 | 
				
			||||||
 | 
					_lib.gptneox_set_rng_seed.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Returns the maximum size in bytes of the state (rng, logits, embedding
 | 
				
			||||||
 | 
					# and kv_cache) - will often be smaller after compacting tokens
 | 
				
			||||||
 | 
					def gptneox_get_state_size(ctx: gptneox_context_p) -> c_size_t:
 | 
				
			||||||
 | 
					    return _lib.gptneox_get_state_size(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_get_state_size.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_get_state_size.restype = c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Copies the state to the specified destination address.
 | 
				
			||||||
 | 
					# Destination needs to have allocated enough memory.
 | 
				
			||||||
 | 
					# Returns the number of bytes copied
 | 
				
			||||||
 | 
					def gptneox_copy_state_data(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p, dst  # type: Array[c_uint8]
 | 
				
			||||||
 | 
					) -> int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_copy_state_data(ctx, dst)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_copy_state_data.argtypes = [gptneox_context_p, c_uint8_p]
 | 
				
			||||||
 | 
					_lib.gptneox_copy_state_data.restype = c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set the state reading from the specified address
 | 
				
			||||||
 | 
					# Returns the number of bytes read
 | 
				
			||||||
 | 
					def gptneox_set_state_data(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p, src  # type: Array[c_uint8]
 | 
				
			||||||
 | 
					) -> int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_set_state_data(ctx, src)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_set_state_data.argtypes = [gptneox_context_p, c_uint8_p]
 | 
				
			||||||
 | 
					_lib.gptneox_set_state_data.restype = c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Save/load session file
 | 
				
			||||||
 | 
					def gptneox_load_session_file(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    path_session: bytes,
 | 
				
			||||||
 | 
					    tokens_out,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    n_token_capacity: c_size_t,
 | 
				
			||||||
 | 
					    n_token_count_out,  # type: _Pointer[c_size_t]
 | 
				
			||||||
 | 
					) -> c_size_t:
 | 
				
			||||||
 | 
					    return _lib.gptneox_load_session_file(
 | 
				
			||||||
 | 
					        ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_load_session_file.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    c_char_p,
 | 
				
			||||||
 | 
					    gptneox_token_p,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					    c_size_t_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_load_session_file.restype = c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_save_session_file(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    path_session: bytes,
 | 
				
			||||||
 | 
					    tokens,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    n_token_count: c_size_t,
 | 
				
			||||||
 | 
					) -> c_size_t:
 | 
				
			||||||
 | 
					    return _lib.gptneox_save_session_file(ctx, path_session, tokens, n_token_count)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_save_session_file.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    c_char_p,
 | 
				
			||||||
 | 
					    gptneox_token_p,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_save_session_file.restype = c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Run the gptneox inference to obtain the logits and probabilities for the next token.
 | 
				
			||||||
 | 
					# tokens + n_tokens is the provided batch of new tokens to process
 | 
				
			||||||
 | 
					# n_past is the number of tokens to use from previous eval calls
 | 
				
			||||||
 | 
					# Returns 0 on success
 | 
				
			||||||
 | 
					def gptneox_eval(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    tokens,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    n_tokens: c_int,
 | 
				
			||||||
 | 
					    n_past: c_int,
 | 
				
			||||||
 | 
					    n_threads: c_int,
 | 
				
			||||||
 | 
					) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_eval(ctx, tokens, n_tokens, n_past, n_threads)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_eval.argtypes = [gptneox_context_p, gptneox_token_p, c_int, c_int, c_int]
 | 
				
			||||||
 | 
					_lib.gptneox_eval.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Convert the provided text into tokens.
 | 
				
			||||||
 | 
					# The tokens pointer must be large enough to hold the resulting tokens.
 | 
				
			||||||
 | 
					# Returns the number of tokens on success, no more than n_max_tokens
 | 
				
			||||||
 | 
					# Returns a negative number on failure - the number of tokens that would have been returned
 | 
				
			||||||
 | 
					# TODO: not sure if correct
 | 
				
			||||||
 | 
					def gptneox_tokenize(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    text: bytes,
 | 
				
			||||||
 | 
					    tokens,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    n_max_tokens: c_int,
 | 
				
			||||||
 | 
					    add_bos: c_bool,
 | 
				
			||||||
 | 
					) -> int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_tokenize.argtypes = [gptneox_context_p, c_char_p, gptneox_token_p, c_int, c_bool]
 | 
				
			||||||
 | 
					_lib.gptneox_tokenize.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_n_vocab(ctx: gptneox_context_p) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_n_vocab(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_n_vocab.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_n_vocab.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_n_ctx(ctx: gptneox_context_p) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_n_ctx(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_n_ctx.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_n_ctx.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_n_embd(ctx: gptneox_context_p) -> c_int:
 | 
				
			||||||
 | 
					    return _lib.gptneox_n_embd(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_n_embd.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_n_embd.restype = c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Token logits obtained from the last call to gptneox_eval()
 | 
				
			||||||
 | 
					# The logits for the last token are stored in the last row
 | 
				
			||||||
 | 
					# Can be mutated in order to change the probabilities of the next token
 | 
				
			||||||
 | 
					# Rows: n_tokens
 | 
				
			||||||
 | 
					# Cols: n_vocab
 | 
				
			||||||
 | 
					def gptneox_get_logits(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					):  # type: (...) -> Array[float] # type: ignore
 | 
				
			||||||
 | 
					    return _lib.gptneox_get_logits(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_get_logits.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_get_logits.restype = c_float_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Get the embeddings for the input
 | 
				
			||||||
 | 
					# shape: [n_embd] (1-dimensional)
 | 
				
			||||||
 | 
					def gptneox_get_embeddings(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					):  # type: (...) -> Array[float] # type: ignore
 | 
				
			||||||
 | 
					    return _lib.gptneox_get_embeddings(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_get_embeddings.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_get_embeddings.restype = c_float_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Token Id -> String. Uses the vocabulary in the provided context
 | 
				
			||||||
 | 
					def gptneox_token_to_str(ctx: gptneox_context_p, token: gptneox_token) -> bytes:
 | 
				
			||||||
 | 
					    return _lib.gptneox_token_to_str(ctx, token)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_token_to_str.argtypes = [gptneox_context_p, gptneox_token]
 | 
				
			||||||
 | 
					_lib.gptneox_token_to_str.restype = c_char_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# String -> Token Id. Uses the vocabulary in the provided context
 | 
				
			||||||
 | 
					def gptneox_str_to_token(ctx: gptneox_context_p, input_str: c_char_p):
 | 
				
			||||||
 | 
					    return _lib.gptneox_str_to_token(ctx, input_str)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_str_to_token.argtypes = [gptneox_context_p, c_char_p]
 | 
				
			||||||
 | 
					_lib.gptneox_str_to_token.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# TODO: improve the last_n_tokens interface ?
 | 
				
			||||||
 | 
					# def gptneox_sample_top_p_top_k(ctx: gptneox_context_p, last_n_tokens_data: gptneox_token,
 | 
				
			||||||
 | 
					#                                last_n_tokens_size: c_int, top_k: c_int, top_p: c_float,
 | 
				
			||||||
 | 
					#                                temp: c_float, repeat_penalty: c_float):
 | 
				
			||||||
 | 
					#     return _lib.gptneox_sample_top_p_top_k(ctx, last_n_tokens_data, last_n_tokens_size,
 | 
				
			||||||
 | 
					#                                            top_k, top_p, temp, repeat_penalty)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# _lib.gptneox_sample_top_p_top_k.argtypes = [gptneox_context_p, gptneox_token,
 | 
				
			||||||
 | 
					# c_int, c_int, c_float, c_float, c_float]
 | 
				
			||||||
 | 
					# _lib.gptneox_sample_top_p_top_k.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Special tokens
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_token_bos() -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_token_bos()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_token_bos.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_token_bos.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_token_eos() -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_token_eos()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_token_eos.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_token_eos.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# def gptneox_token_nl() -> gptneox_token:
 | 
				
			||||||
 | 
					#     return _lib.gptneox_token_nl()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# _lib.gptneox_token_nl.argtypes = []
 | 
				
			||||||
 | 
					# _lib.gptneox_token_nl.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Sampling functions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858,
 | 
				
			||||||
 | 
					# with negative logit fix.
 | 
				
			||||||
 | 
					def gptneox_sample_repetition_penalty(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    last_tokens_data,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    last_tokens_size: c_int,
 | 
				
			||||||
 | 
					    penalty: c_float,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_repetition_penalty(
 | 
				
			||||||
 | 
					        ctx, candidates, last_tokens_data, last_tokens_size, penalty
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_repetition_penalty.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    gptneox_token_p,
 | 
				
			||||||
 | 
					    c_int,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_repetition_penalty.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Frequency and presence penalties described in OpenAI API
 | 
				
			||||||
 | 
					# https://platform.openai.com/docs/api-reference/parameter-details.
 | 
				
			||||||
 | 
					def gptneox_sample_frequency_and_presence_penalties(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    last_tokens_data,  # type: Array[gptneox_token]
 | 
				
			||||||
 | 
					    last_tokens_size: c_int,
 | 
				
			||||||
 | 
					    alpha_frequency: c_float,
 | 
				
			||||||
 | 
					    alpha_presence: c_float,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_frequency_and_presence_penalties(
 | 
				
			||||||
 | 
					        ctx,
 | 
				
			||||||
 | 
					        candidates,
 | 
				
			||||||
 | 
					        last_tokens_data,
 | 
				
			||||||
 | 
					        last_tokens_size,
 | 
				
			||||||
 | 
					        alpha_frequency,
 | 
				
			||||||
 | 
					        alpha_presence,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_frequency_and_presence_penalties.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    gptneox_token_p,
 | 
				
			||||||
 | 
					    c_int,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_frequency_and_presence_penalties.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Sorts candidate tokens by their logits in descending order and
 | 
				
			||||||
 | 
					# calculate probabilities based on logits.
 | 
				
			||||||
 | 
					def gptneox_sample_softmax(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p, candidates  # type: _Pointer[gptneox_token_data]
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_softmax(ctx, candidates)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_softmax.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_softmax.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Top-K sampling described in academic paper
 | 
				
			||||||
 | 
					# "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | 
				
			||||||
 | 
					def gptneox_sample_top_k(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    k: c_int,
 | 
				
			||||||
 | 
					    min_keep: c_size_t,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_top_k(ctx, candidates, k, min_keep)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_top_k.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_int,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_top_k.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Nucleus sampling described in academic paper
 | 
				
			||||||
 | 
					# "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | 
				
			||||||
 | 
					def gptneox_sample_top_p(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    p: c_float,
 | 
				
			||||||
 | 
					    min_keep: c_size_t,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_top_p(ctx, candidates, p, min_keep)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_top_p.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_top_p.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
 | 
				
			||||||
 | 
					def gptneox_sample_tail_free(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    z: c_float,
 | 
				
			||||||
 | 
					    min_keep: c_size_t,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_tail_free(ctx, candidates, z, min_keep)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_tail_free.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_tail_free.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Locally Typical Sampling implementation described in the paper
 | 
				
			||||||
 | 
					# https://arxiv.org/abs/2202.00666.
 | 
				
			||||||
 | 
					def gptneox_sample_typical(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    p: c_float,
 | 
				
			||||||
 | 
					    min_keep: c_size_t,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_typical(ctx, candidates, p, min_keep)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_typical.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_size_t,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_typical.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_sample_temperature(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    temp: c_float,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_temperature(ctx, candidates, temp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_temperature.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_temperature.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966.
 | 
				
			||||||
 | 
					# Uses tokens instead of words.
 | 
				
			||||||
 | 
					# @param candidates A vector of `gptneox_token_data` containing the candidate tokens,
 | 
				
			||||||
 | 
					# their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | 
				
			||||||
 | 
					# @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated
 | 
				
			||||||
 | 
					# text. A higher value corresponds to more surprising or less predictable text, while a lower value
 | 
				
			||||||
 | 
					# corresponds to less surprising or more predictable text.
 | 
				
			||||||
 | 
					# @param eta The learning rate used to update `mu` based on the error between the target and
 | 
				
			||||||
 | 
					# observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
 | 
				
			||||||
 | 
					# updated more quickly, while a smaller learning rate will result in slower updates.
 | 
				
			||||||
 | 
					# @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value
 | 
				
			||||||
 | 
					# that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`.
 | 
				
			||||||
 | 
					# In the paper, they use `m = 100`, but you can experiment with different values to see
 | 
				
			||||||
 | 
					# how it affects the performance of the algorithm.
 | 
				
			||||||
 | 
					# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy
 | 
				
			||||||
 | 
					# (`2 * tau`) and is updated in the algorithm based on the error between the target and
 | 
				
			||||||
 | 
					# observed surprisal.
 | 
				
			||||||
 | 
					def gptneox_sample_token_mirostat(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    tau: c_float,
 | 
				
			||||||
 | 
					    eta: c_float,
 | 
				
			||||||
 | 
					    m: c_int,
 | 
				
			||||||
 | 
					    mu,  # type: _Pointer[c_float]
 | 
				
			||||||
 | 
					) -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_mirostat.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_int,
 | 
				
			||||||
 | 
					    c_float_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_mirostat.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966.
 | 
				
			||||||
 | 
					# Uses tokens instead of words.
 | 
				
			||||||
 | 
					# @param candidates A vector of `gptneox_token_data` containing the candidate tokens,
 | 
				
			||||||
 | 
					# their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | 
				
			||||||
 | 
					# @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated
 | 
				
			||||||
 | 
					# text. A higher value corresponds to more surprising or less predictable text, while a lower value
 | 
				
			||||||
 | 
					# corresponds to less surprising or more predictable text.
 | 
				
			||||||
 | 
					# @param eta The learning rate used to update `mu` based on the error between the target and
 | 
				
			||||||
 | 
					# observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
 | 
				
			||||||
 | 
					# updated more quickly, while a smaller learning rate will result in slower updates.
 | 
				
			||||||
 | 
					# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy
 | 
				
			||||||
 | 
					# (`2 * tau`) and is updated in the algorithm based on the error between the target and
 | 
				
			||||||
 | 
					# observed surprisal.
 | 
				
			||||||
 | 
					def gptneox_sample_token_mirostat_v2(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					    tau: c_float,
 | 
				
			||||||
 | 
					    eta: c_float,
 | 
				
			||||||
 | 
					    mu,  # type: _Pointer[c_float]
 | 
				
			||||||
 | 
					) -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_mirostat_v2.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_float,
 | 
				
			||||||
 | 
					    c_float_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_mirostat_v2.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Selects the token with the highest probability.
 | 
				
			||||||
 | 
					def gptneox_sample_token_greedy(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					) -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_token_greedy(ctx, candidates)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_greedy.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token_greedy.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# @details Randomly selects a token from the candidates based on their probabilities.
 | 
				
			||||||
 | 
					def gptneox_sample_token(
 | 
				
			||||||
 | 
					    ctx: gptneox_context_p,
 | 
				
			||||||
 | 
					    candidates,  # type: _Pointer[gptneox_token_data_array]
 | 
				
			||||||
 | 
					) -> gptneox_token:
 | 
				
			||||||
 | 
					    return _lib.gptneox_sample_token(ctx, candidates)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token.argtypes = [
 | 
				
			||||||
 | 
					    gptneox_context_p,
 | 
				
			||||||
 | 
					    gptneox_token_data_array_p,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.gptneox_sample_token.restype = gptneox_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Performance information
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_print_timings(ctx: gptneox_context_p):
 | 
				
			||||||
 | 
					    _lib.gptneox_print_timings(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_print_timings.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_print_timings.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gptneox_reset_timings(ctx: gptneox_context_p):
 | 
				
			||||||
 | 
					    _lib.gptneox_reset_timings(ctx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_reset_timings.argtypes = [gptneox_context_p]
 | 
				
			||||||
 | 
					_lib.gptneox_reset_timings.restype = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Print system information
 | 
				
			||||||
 | 
					def gptneox_print_system_info() -> bytes:
 | 
				
			||||||
 | 
					    return _lib.gptneox_print_system_info()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.gptneox_print_system_info.argtypes = []
 | 
				
			||||||
 | 
					_lib.gptneox_print_system_info.restype = c_char_p
 | 
				
			||||||
							
								
								
									
										144
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_types.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_types.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,144 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# ===========================================================================
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# This file is adapted from
 | 
				
			||||||
 | 
					# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama_types.py
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# MIT License
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright (c) 2023 Andrei Betlen
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
				
			||||||
 | 
					# of this software and associated documentation files (the "Software"), to deal
 | 
				
			||||||
 | 
					# in the Software without restriction, including without limitation the rights
 | 
				
			||||||
 | 
					# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
				
			||||||
 | 
					# copies of the Software, and to permit persons to whom the Software is
 | 
				
			||||||
 | 
					# furnished to do so, subject to the following conditions:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# The above copyright notice and this permission notice shall be included in all
 | 
				
			||||||
 | 
					# copies or substantial portions of the Software.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
				
			||||||
 | 
					# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
				
			||||||
 | 
					# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
				
			||||||
 | 
					# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
				
			||||||
 | 
					# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
				
			||||||
 | 
					# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
				
			||||||
 | 
					# SOFTWARE.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
				
			||||||
 | 
					# physically located elsewhere.
 | 
				
			||||||
 | 
					# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
				
			||||||
 | 
					# only search the first bigdl package and end up finding only one sub-package.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from typing import List, Optional, Dict, Union
 | 
				
			||||||
 | 
					from typing_extensions import TypedDict, NotRequired, Literal
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class EmbeddingUsage(TypedDict):
 | 
				
			||||||
 | 
					    prompt_tokens: int
 | 
				
			||||||
 | 
					    total_tokens: int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class EmbeddingData(TypedDict):
 | 
				
			||||||
 | 
					    index: int
 | 
				
			||||||
 | 
					    object: str
 | 
				
			||||||
 | 
					    embedding: List[float]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Embedding(TypedDict):
 | 
				
			||||||
 | 
					    object: Literal["list"]
 | 
				
			||||||
 | 
					    model: str
 | 
				
			||||||
 | 
					    data: List[EmbeddingData]
 | 
				
			||||||
 | 
					    usage: EmbeddingUsage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CompletionLogprobs(TypedDict):
 | 
				
			||||||
 | 
					    text_offset: List[int]
 | 
				
			||||||
 | 
					    token_logprobs: List[float]
 | 
				
			||||||
 | 
					    tokens: List[str]
 | 
				
			||||||
 | 
					    top_logprobs: List[Dict[str, float]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CompletionChoice(TypedDict):
 | 
				
			||||||
 | 
					    text: str
 | 
				
			||||||
 | 
					    index: int
 | 
				
			||||||
 | 
					    logprobs: Optional[CompletionLogprobs]
 | 
				
			||||||
 | 
					    finish_reason: Optional[str]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CompletionUsage(TypedDict):
 | 
				
			||||||
 | 
					    prompt_tokens: int
 | 
				
			||||||
 | 
					    completion_tokens: int
 | 
				
			||||||
 | 
					    total_tokens: int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CompletionChunk(TypedDict):
 | 
				
			||||||
 | 
					    id: str
 | 
				
			||||||
 | 
					    object: Literal["text_completion"]
 | 
				
			||||||
 | 
					    created: int
 | 
				
			||||||
 | 
					    model: str
 | 
				
			||||||
 | 
					    choices: List[CompletionChoice]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Completion(TypedDict):
 | 
				
			||||||
 | 
					    id: str
 | 
				
			||||||
 | 
					    object: Literal["text_completion"]
 | 
				
			||||||
 | 
					    created: int
 | 
				
			||||||
 | 
					    model: str
 | 
				
			||||||
 | 
					    choices: List[CompletionChoice]
 | 
				
			||||||
 | 
					    usage: CompletionUsage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletionMessage(TypedDict):
 | 
				
			||||||
 | 
					    role: Literal["assistant", "user", "system"]
 | 
				
			||||||
 | 
					    content: str
 | 
				
			||||||
 | 
					    user: NotRequired[str]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletionChoice(TypedDict):
 | 
				
			||||||
 | 
					    index: int
 | 
				
			||||||
 | 
					    message: ChatCompletionMessage
 | 
				
			||||||
 | 
					    finish_reason: Optional[str]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletion(TypedDict):
 | 
				
			||||||
 | 
					    id: str
 | 
				
			||||||
 | 
					    object: Literal["chat.completion"]
 | 
				
			||||||
 | 
					    created: int
 | 
				
			||||||
 | 
					    model: str
 | 
				
			||||||
 | 
					    choices: List[ChatCompletionChoice]
 | 
				
			||||||
 | 
					    usage: CompletionUsage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletionChunkDelta(TypedDict):
 | 
				
			||||||
 | 
					    role: NotRequired[Literal["assistant"]]
 | 
				
			||||||
 | 
					    content: NotRequired[str]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletionChunkChoice(TypedDict):
 | 
				
			||||||
 | 
					    index: int
 | 
				
			||||||
 | 
					    delta: ChatCompletionChunkDelta
 | 
				
			||||||
 | 
					    finish_reason: Optional[str]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ChatCompletionChunk(TypedDict):
 | 
				
			||||||
 | 
					    id: str
 | 
				
			||||||
 | 
					    model: str
 | 
				
			||||||
 | 
					    object: Literal["chat.completion.chunk"]
 | 
				
			||||||
 | 
					    created: int
 | 
				
			||||||
 | 
					    choices: List[ChatCompletionChunkChoice]
 | 
				
			||||||
		Loading…
	
		Reference in a new issue