LLM: first push gptneox pybinding (#8234)
* first push gptneox pybinding * fix * fix code style and add license --------- Co-authored-by: binbin <binbin1.deng@intel.com>
This commit is contained in:
parent
3a9aa23835
commit
350d31a472
5 changed files with 2239 additions and 0 deletions
20
python/llm/src/bigdl/llm/ggml/model/__init__.py
Normal file
20
python/llm/src/bigdl/llm/ggml/model/__init__.py
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
23
python/llm/src/bigdl/llm/ggml/model/gptneox/__init__.py
Normal file
23
python/llm/src/bigdl/llm/ggml/model/gptneox/__init__.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
from .gptneox_cpp import *
|
||||
from .gptneox import *
|
||||
1229
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox.py
Normal file
1229
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox.py
Normal file
File diff suppressed because it is too large
Load diff
823
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_cpp.py
Normal file
823
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_cpp.py
Normal file
|
|
@ -0,0 +1,823 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# ===========================================================================
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama_cpp.py
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2023 Andrei Betlen
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
import sys
|
||||
import os
|
||||
import ctypes
|
||||
from ctypes import (
|
||||
c_int,
|
||||
c_float,
|
||||
c_char_p,
|
||||
c_void_p,
|
||||
c_bool,
|
||||
POINTER,
|
||||
_Pointer, # type: ignore
|
||||
Structure,
|
||||
Array,
|
||||
c_uint8,
|
||||
c_size_t,
|
||||
)
|
||||
import pathlib
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
# Load the library
|
||||
def _load_shared_library(lib_base_name: str):
|
||||
# Determine the file extension based on the platform
|
||||
if sys.platform.startswith("linux"):
|
||||
lib_ext = ".so"
|
||||
elif sys.platform == "darwin":
|
||||
lib_ext = ".so"
|
||||
elif sys.platform == "win32":
|
||||
lib_ext = ".dll"
|
||||
else:
|
||||
invalidInputError(False, "Unsupported platform.")
|
||||
|
||||
# Construct the paths to the possible shared library names (python/llm/src/bigdl/llm/libs)
|
||||
_base_path = pathlib.Path(__file__).parent.parent.parent.parent.resolve()
|
||||
_base_path = _base_path / 'libs'
|
||||
# Searching for the library in the current directory under the name "libgptneox" (default name
|
||||
# for gptneoxcpp) and "gptneox" (default name for this repo)
|
||||
_lib_paths = [
|
||||
_base_path / f"lib{lib_base_name}{lib_ext}",
|
||||
_base_path / f"{lib_base_name}{lib_ext}",
|
||||
]
|
||||
|
||||
if "GPTNEOX_CPP_LIB" in os.environ:
|
||||
lib_base_name = os.environ["GPTNEOX_CPP_LIB"]
|
||||
_lib = pathlib.Path(lib_base_name)
|
||||
_base_path = _lib.parent.resolve()
|
||||
_lib_paths = [_lib.resolve()]
|
||||
|
||||
cdll_args = dict() # type: ignore
|
||||
# Add the library directory to the DLL search path on Windows (if needed)
|
||||
if sys.platform == "win32" and sys.version_info >= (3, 8):
|
||||
os.add_dll_directory(str(_base_path))
|
||||
cdll_args["winmode"] = 0
|
||||
|
||||
# Try to load the shared library, handling potential errors
|
||||
for _lib_path in _lib_paths:
|
||||
if _lib_path.exists():
|
||||
try:
|
||||
return ctypes.CDLL(str(_lib_path), **cdll_args)
|
||||
except Exception as e:
|
||||
invalidInputError(False, f"Failed to load shared library '{_lib_path}': {e}.")
|
||||
|
||||
invalidInputError(False, f"Shared library with base name '{lib_base_name}' not found.")
|
||||
|
||||
|
||||
# Specify the base name of the shared library to load
|
||||
_lib_base_name = "gptneox"
|
||||
|
||||
# Load the library
|
||||
_lib = _load_shared_library(_lib_base_name)
|
||||
|
||||
# C types
|
||||
GPTNEOX_FILE_VERSION = c_int(1)
|
||||
GPTNEOX_FILE_MAGIC = b"ggjt"
|
||||
GPTNEOX_FILE_MAGIC_UNVERSIONED = b"ggml"
|
||||
# GPTNEOX_SESSION_MAGIC = b"ggsn"
|
||||
# GPTNEOX_SESSION_VERSION = c_int(1)
|
||||
|
||||
gptneox_context_p = c_void_p
|
||||
|
||||
|
||||
gptneox_token = c_int
|
||||
gptneox_token_p = POINTER(gptneox_token)
|
||||
|
||||
|
||||
class gptneox_token_data(Structure):
|
||||
_fields_ = [
|
||||
("id", gptneox_token), # token id
|
||||
("logit", c_float), # log-odds of the token
|
||||
("p", c_float), # probability of the token
|
||||
]
|
||||
|
||||
|
||||
gptneox_token_data_p = POINTER(gptneox_token_data)
|
||||
|
||||
|
||||
class gptneox_token_data_array(Structure):
|
||||
_fields_ = [
|
||||
("data", gptneox_token_data_p),
|
||||
("size", c_size_t),
|
||||
("sorted", c_bool),
|
||||
]
|
||||
|
||||
|
||||
gptneox_token_data_array_p = POINTER(gptneox_token_data_array)
|
||||
|
||||
gptneox_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
|
||||
|
||||
|
||||
class gptneox_context_params(Structure):
|
||||
_fields_ = [
|
||||
("n_ctx", c_int), # text context
|
||||
("n_parts", c_int), # -1 for default
|
||||
# ("n_gpu_layers", c_int), # number of layers to store in VRAM
|
||||
("seed", c_int), # RNG seed, 0 for random
|
||||
("f16_kv", c_bool), # use fp16 for KV cache
|
||||
(
|
||||
"logits_all",
|
||||
c_bool,
|
||||
), # the gptneox_eval() call computes all logits, not just the last one
|
||||
("vocab_only", c_bool), # only load the vocabulary, no weights
|
||||
("use_mmap", c_bool), # use mmap if possible
|
||||
("use_mlock", c_bool), # force system to keep model in RAM
|
||||
("embedding", c_bool), # embedding mode only
|
||||
# called with a progress value between 0 and 1, pass NULL to disable
|
||||
("progress_callback", gptneox_progress_callback),
|
||||
# context pointer passed to the progress callback
|
||||
("progress_callback_user_data", c_void_p),
|
||||
]
|
||||
|
||||
|
||||
gptneox_context_params_p = POINTER(gptneox_context_params)
|
||||
|
||||
GPTNEOX_FTYPE_ALL_F32 = c_int(0)
|
||||
GPTNEOX_FTYPE_MOSTLY_F16 = c_int(1) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q4_0 = c_int(2) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q4_1 = c_int(3) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(
|
||||
4
|
||||
) # tok_embeddings.weight and output.weight are F16
|
||||
GPTNEOX_FTYPE_MOSTLY_Q4_2 = c_int(5) # except 1d tensors
|
||||
# GPTNEOX_FTYPE_MOSTYL_Q4_3 = c_int(6) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q8_0 = c_int(7) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q5_0 = c_int(8) # except 1d tensors
|
||||
GPTNEOX_FTYPE_MOSTLY_Q5_1 = c_int(9) # except 1d tensors
|
||||
|
||||
# Misc
|
||||
c_float_p = POINTER(c_float)
|
||||
c_uint8_p = POINTER(c_uint8)
|
||||
c_size_t_p = POINTER(c_size_t)
|
||||
|
||||
# Functions
|
||||
|
||||
|
||||
def gptneox_context_default_params() -> gptneox_context_params:
|
||||
return _lib.gptneox_context_default_params()
|
||||
|
||||
|
||||
_lib.gptneox_context_default_params.argtypes = []
|
||||
_lib.gptneox_context_default_params.restype = gptneox_context_params
|
||||
|
||||
|
||||
def gptneox_mmap_supported() -> bool:
|
||||
return _lib.gptneox_mmap_supported()
|
||||
|
||||
|
||||
_lib.gptneox_mmap_supported.argtypes = []
|
||||
_lib.gptneox_mmap_supported.restype = c_bool
|
||||
|
||||
|
||||
def gptneox_mlock_supported() -> bool:
|
||||
return _lib.gptneox_mlock_supported()
|
||||
|
||||
|
||||
_lib.gptneox_mlock_supported.argtypes = []
|
||||
_lib.gptneox_mlock_supported.restype = c_bool
|
||||
|
||||
|
||||
# Various functions for loading a ggml gptneox model.
|
||||
# Allocate (almost) all memory needed for the model.
|
||||
# Return NULL on failure
|
||||
def gptneox_init_from_file(
|
||||
path_model: bytes, params: gptneox_context_params
|
||||
) -> gptneox_context_p:
|
||||
return _lib.gptneox_init_from_file(path_model, params)
|
||||
|
||||
|
||||
_lib.gptneox_init_from_file.argtypes = [c_char_p, gptneox_context_params]
|
||||
_lib.gptneox_init_from_file.restype = gptneox_context_p
|
||||
|
||||
|
||||
# Frees all allocated memory
|
||||
def gptneox_free(ctx: gptneox_context_p):
|
||||
_lib.gptneox_free(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_free.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_free.restype = None
|
||||
|
||||
|
||||
# TODO: not great API - very likely to change
|
||||
# Returns 0 on success
|
||||
# nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(),
|
||||
# else the number given
|
||||
def gptneox_model_quantize(
|
||||
fname_inp: bytes, fname_out: bytes, ftype: c_int, nthread: c_int
|
||||
) -> c_int:
|
||||
return _lib.gptneox_model_quantize(fname_inp, fname_out, ftype, nthread)
|
||||
|
||||
|
||||
_lib.gptneox_model_quantize.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
||||
_lib.gptneox_model_quantize.restype = c_int
|
||||
|
||||
|
||||
def gptneox_model_copy(
|
||||
fname_inp: bytes, fname_out: bytes, ftype: c_int
|
||||
) -> c_int:
|
||||
return _lib.gptneox_model_copy(fname_inp, fname_out, ftype)
|
||||
|
||||
_lib.gptneox_model_copy.argtypes = [c_char_p, c_char_p, c_int]
|
||||
_lib.gptneox_model_copy.restype = c_int
|
||||
|
||||
|
||||
# Apply a LoRA adapter to a loaded model
|
||||
# path_base_model is the path to a higher quality model to use as a base for
|
||||
# the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
# The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
# will be applied on top of the previous one
|
||||
# Returns 0 on success
|
||||
def gptneox_apply_lora_from_file(
|
||||
ctx: gptneox_context_p,
|
||||
path_lora: c_char_p,
|
||||
path_base_model: c_char_p,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
return _lib.gptneox_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)
|
||||
|
||||
|
||||
_lib.gptneox_apply_lora_from_file.argtypes = [gptneox_context_p, c_char_p, c_char_p, c_int]
|
||||
_lib.gptneox_apply_lora_from_file.restype = c_int
|
||||
|
||||
|
||||
# Returns the number of tokens in the KV cache
|
||||
def gptneox_get_kv_cache_token_count(ctx: gptneox_context_p) -> c_int:
|
||||
return _lib.gptneox_get_kv_cache_token_count(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_get_kv_cache_token_count.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_get_kv_cache_token_count.restype = c_int
|
||||
|
||||
|
||||
# Sets the current rng seed.
|
||||
def gptneox_set_rng_seed(ctx: gptneox_context_p, seed: c_int):
|
||||
return _lib.gptneox_set_rng_seed(ctx, seed)
|
||||
|
||||
|
||||
_lib.gptneox_set_rng_seed.argtypes = [gptneox_context_p, c_int]
|
||||
_lib.gptneox_set_rng_seed.restype = None
|
||||
|
||||
|
||||
# Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
# and kv_cache) - will often be smaller after compacting tokens
|
||||
def gptneox_get_state_size(ctx: gptneox_context_p) -> c_size_t:
|
||||
return _lib.gptneox_get_state_size(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_get_state_size.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_get_state_size.restype = c_size_t
|
||||
|
||||
|
||||
# Copies the state to the specified destination address.
|
||||
# Destination needs to have allocated enough memory.
|
||||
# Returns the number of bytes copied
|
||||
def gptneox_copy_state_data(
|
||||
ctx: gptneox_context_p, dst # type: Array[c_uint8]
|
||||
) -> int:
|
||||
return _lib.gptneox_copy_state_data(ctx, dst)
|
||||
|
||||
|
||||
_lib.gptneox_copy_state_data.argtypes = [gptneox_context_p, c_uint8_p]
|
||||
_lib.gptneox_copy_state_data.restype = c_size_t
|
||||
|
||||
|
||||
# Set the state reading from the specified address
|
||||
# Returns the number of bytes read
|
||||
def gptneox_set_state_data(
|
||||
ctx: gptneox_context_p, src # type: Array[c_uint8]
|
||||
) -> int:
|
||||
return _lib.gptneox_set_state_data(ctx, src)
|
||||
|
||||
|
||||
_lib.gptneox_set_state_data.argtypes = [gptneox_context_p, c_uint8_p]
|
||||
_lib.gptneox_set_state_data.restype = c_size_t
|
||||
|
||||
|
||||
# Save/load session file
|
||||
def gptneox_load_session_file(
|
||||
ctx: gptneox_context_p,
|
||||
path_session: bytes,
|
||||
tokens_out, # type: Array[gptneox_token]
|
||||
n_token_capacity: c_size_t,
|
||||
n_token_count_out, # type: _Pointer[c_size_t]
|
||||
) -> c_size_t:
|
||||
return _lib.gptneox_load_session_file(
|
||||
ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
|
||||
)
|
||||
|
||||
|
||||
_lib.gptneox_load_session_file.argtypes = [
|
||||
gptneox_context_p,
|
||||
c_char_p,
|
||||
gptneox_token_p,
|
||||
c_size_t,
|
||||
c_size_t_p,
|
||||
]
|
||||
_lib.gptneox_load_session_file.restype = c_size_t
|
||||
|
||||
|
||||
def gptneox_save_session_file(
|
||||
ctx: gptneox_context_p,
|
||||
path_session: bytes,
|
||||
tokens, # type: Array[gptneox_token]
|
||||
n_token_count: c_size_t,
|
||||
) -> c_size_t:
|
||||
return _lib.gptneox_save_session_file(ctx, path_session, tokens, n_token_count)
|
||||
|
||||
|
||||
_lib.gptneox_save_session_file.argtypes = [
|
||||
gptneox_context_p,
|
||||
c_char_p,
|
||||
gptneox_token_p,
|
||||
c_size_t,
|
||||
]
|
||||
_lib.gptneox_save_session_file.restype = c_size_t
|
||||
|
||||
|
||||
# Run the gptneox inference to obtain the logits and probabilities for the next token.
|
||||
# tokens + n_tokens is the provided batch of new tokens to process
|
||||
# n_past is the number of tokens to use from previous eval calls
|
||||
# Returns 0 on success
|
||||
def gptneox_eval(
|
||||
ctx: gptneox_context_p,
|
||||
tokens, # type: Array[gptneox_token]
|
||||
n_tokens: c_int,
|
||||
n_past: c_int,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
return _lib.gptneox_eval(ctx, tokens, n_tokens, n_past, n_threads)
|
||||
|
||||
|
||||
_lib.gptneox_eval.argtypes = [gptneox_context_p, gptneox_token_p, c_int, c_int, c_int]
|
||||
_lib.gptneox_eval.restype = c_int
|
||||
|
||||
|
||||
# Convert the provided text into tokens.
|
||||
# The tokens pointer must be large enough to hold the resulting tokens.
|
||||
# Returns the number of tokens on success, no more than n_max_tokens
|
||||
# Returns a negative number on failure - the number of tokens that would have been returned
|
||||
# TODO: not sure if correct
|
||||
def gptneox_tokenize(
|
||||
ctx: gptneox_context_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[gptneox_token]
|
||||
n_max_tokens: c_int,
|
||||
add_bos: c_bool,
|
||||
) -> int:
|
||||
return _lib.gptneox_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
_lib.gptneox_tokenize.argtypes = [gptneox_context_p, c_char_p, gptneox_token_p, c_int, c_bool]
|
||||
_lib.gptneox_tokenize.restype = c_int
|
||||
|
||||
|
||||
def gptneox_n_vocab(ctx: gptneox_context_p) -> c_int:
|
||||
return _lib.gptneox_n_vocab(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_n_vocab.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_n_vocab.restype = c_int
|
||||
|
||||
|
||||
def gptneox_n_ctx(ctx: gptneox_context_p) -> c_int:
|
||||
return _lib.gptneox_n_ctx(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_n_ctx.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_n_ctx.restype = c_int
|
||||
|
||||
|
||||
def gptneox_n_embd(ctx: gptneox_context_p) -> c_int:
|
||||
return _lib.gptneox_n_embd(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_n_embd.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_n_embd.restype = c_int
|
||||
|
||||
|
||||
# Token logits obtained from the last call to gptneox_eval()
|
||||
# The logits for the last token are stored in the last row
|
||||
# Can be mutated in order to change the probabilities of the next token
|
||||
# Rows: n_tokens
|
||||
# Cols: n_vocab
|
||||
def gptneox_get_logits(
|
||||
ctx: gptneox_context_p,
|
||||
): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.gptneox_get_logits(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_get_logits.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_get_logits.restype = c_float_p
|
||||
|
||||
|
||||
# Get the embeddings for the input
|
||||
# shape: [n_embd] (1-dimensional)
|
||||
def gptneox_get_embeddings(
|
||||
ctx: gptneox_context_p,
|
||||
): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.gptneox_get_embeddings(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_get_embeddings.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_get_embeddings.restype = c_float_p
|
||||
|
||||
|
||||
# Token Id -> String. Uses the vocabulary in the provided context
|
||||
def gptneox_token_to_str(ctx: gptneox_context_p, token: gptneox_token) -> bytes:
|
||||
return _lib.gptneox_token_to_str(ctx, token)
|
||||
|
||||
|
||||
_lib.gptneox_token_to_str.argtypes = [gptneox_context_p, gptneox_token]
|
||||
_lib.gptneox_token_to_str.restype = c_char_p
|
||||
|
||||
|
||||
# String -> Token Id. Uses the vocabulary in the provided context
|
||||
def gptneox_str_to_token(ctx: gptneox_context_p, input_str: c_char_p):
|
||||
return _lib.gptneox_str_to_token(ctx, input_str)
|
||||
|
||||
|
||||
_lib.gptneox_str_to_token.argtypes = [gptneox_context_p, c_char_p]
|
||||
_lib.gptneox_str_to_token.restype = gptneox_token
|
||||
|
||||
# TODO: improve the last_n_tokens interface ?
|
||||
# def gptneox_sample_top_p_top_k(ctx: gptneox_context_p, last_n_tokens_data: gptneox_token,
|
||||
# last_n_tokens_size: c_int, top_k: c_int, top_p: c_float,
|
||||
# temp: c_float, repeat_penalty: c_float):
|
||||
# return _lib.gptneox_sample_top_p_top_k(ctx, last_n_tokens_data, last_n_tokens_size,
|
||||
# top_k, top_p, temp, repeat_penalty)
|
||||
|
||||
|
||||
# _lib.gptneox_sample_top_p_top_k.argtypes = [gptneox_context_p, gptneox_token,
|
||||
# c_int, c_int, c_float, c_float, c_float]
|
||||
# _lib.gptneox_sample_top_p_top_k.restype = gptneox_token
|
||||
|
||||
# Special tokens
|
||||
|
||||
|
||||
def gptneox_token_bos() -> gptneox_token:
|
||||
return _lib.gptneox_token_bos()
|
||||
|
||||
|
||||
_lib.gptneox_token_bos.argtypes = []
|
||||
_lib.gptneox_token_bos.restype = gptneox_token
|
||||
|
||||
|
||||
def gptneox_token_eos() -> gptneox_token:
|
||||
return _lib.gptneox_token_eos()
|
||||
|
||||
|
||||
_lib.gptneox_token_eos.argtypes = []
|
||||
_lib.gptneox_token_eos.restype = gptneox_token
|
||||
|
||||
|
||||
# def gptneox_token_nl() -> gptneox_token:
|
||||
# return _lib.gptneox_token_nl()
|
||||
|
||||
|
||||
# _lib.gptneox_token_nl.argtypes = []
|
||||
# _lib.gptneox_token_nl.restype = gptneox_token
|
||||
|
||||
|
||||
# Sampling functions
|
||||
|
||||
|
||||
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858,
|
||||
# with negative logit fix.
|
||||
def gptneox_sample_repetition_penalty(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
last_tokens_data, # type: Array[gptneox_token]
|
||||
last_tokens_size: c_int,
|
||||
penalty: c_float,
|
||||
):
|
||||
return _lib.gptneox_sample_repetition_penalty(
|
||||
ctx, candidates, last_tokens_data, last_tokens_size, penalty
|
||||
)
|
||||
|
||||
|
||||
_lib.gptneox_sample_repetition_penalty.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
gptneox_token_p,
|
||||
c_int,
|
||||
c_float,
|
||||
]
|
||||
_lib.gptneox_sample_repetition_penalty.restype = None
|
||||
|
||||
|
||||
# @details Frequency and presence penalties described in OpenAI API
|
||||
# https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
def gptneox_sample_frequency_and_presence_penalties(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
last_tokens_data, # type: Array[gptneox_token]
|
||||
last_tokens_size: c_int,
|
||||
alpha_frequency: c_float,
|
||||
alpha_presence: c_float,
|
||||
):
|
||||
return _lib.gptneox_sample_frequency_and_presence_penalties(
|
||||
ctx,
|
||||
candidates,
|
||||
last_tokens_data,
|
||||
last_tokens_size,
|
||||
alpha_frequency,
|
||||
alpha_presence,
|
||||
)
|
||||
|
||||
|
||||
_lib.gptneox_sample_frequency_and_presence_penalties.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
gptneox_token_p,
|
||||
c_int,
|
||||
c_float,
|
||||
c_float,
|
||||
]
|
||||
_lib.gptneox_sample_frequency_and_presence_penalties.restype = None
|
||||
|
||||
|
||||
# @details Sorts candidate tokens by their logits in descending order and
|
||||
# calculate probabilities based on logits.
|
||||
def gptneox_sample_softmax(
|
||||
ctx: gptneox_context_p, candidates # type: _Pointer[gptneox_token_data]
|
||||
):
|
||||
return _lib.gptneox_sample_softmax(ctx, candidates)
|
||||
|
||||
|
||||
_lib.gptneox_sample_softmax.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
]
|
||||
_lib.gptneox_sample_softmax.restype = None
|
||||
|
||||
|
||||
# @details Top-K sampling described in academic paper
|
||||
# "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
def gptneox_sample_top_k(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
k: c_int,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.gptneox_sample_top_k(ctx, candidates, k, min_keep)
|
||||
|
||||
|
||||
_lib.gptneox_sample_top_k.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_int,
|
||||
c_size_t,
|
||||
]
|
||||
_lib.gptneox_sample_top_k.restype = None
|
||||
|
||||
|
||||
# @details Nucleus sampling described in academic paper
|
||||
# "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
def gptneox_sample_top_p(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.gptneox_sample_top_p(ctx, candidates, p, min_keep)
|
||||
|
||||
|
||||
_lib.gptneox_sample_top_p.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
c_size_t,
|
||||
]
|
||||
_lib.gptneox_sample_top_p.restype = None
|
||||
|
||||
|
||||
# @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
def gptneox_sample_tail_free(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
z: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.gptneox_sample_tail_free(ctx, candidates, z, min_keep)
|
||||
|
||||
|
||||
_lib.gptneox_sample_tail_free.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
c_size_t,
|
||||
]
|
||||
_lib.gptneox_sample_tail_free.restype = None
|
||||
|
||||
|
||||
# @details Locally Typical Sampling implementation described in the paper
|
||||
# https://arxiv.org/abs/2202.00666.
|
||||
def gptneox_sample_typical(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.gptneox_sample_typical(ctx, candidates, p, min_keep)
|
||||
|
||||
|
||||
_lib.gptneox_sample_typical.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
c_size_t,
|
||||
]
|
||||
_lib.gptneox_sample_typical.restype = None
|
||||
|
||||
|
||||
def gptneox_sample_temperature(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
temp: c_float,
|
||||
):
|
||||
return _lib.gptneox_sample_temperature(ctx, candidates, temp)
|
||||
|
||||
|
||||
_lib.gptneox_sample_temperature.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
]
|
||||
_lib.gptneox_sample_temperature.restype = None
|
||||
|
||||
|
||||
# @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966.
|
||||
# Uses tokens instead of words.
|
||||
# @param candidates A vector of `gptneox_token_data` containing the candidate tokens,
|
||||
# their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
# @param tau The target cross-entropy (or surprise) value you want to achieve for the generated
|
||||
# text. A higher value corresponds to more surprising or less predictable text, while a lower value
|
||||
# corresponds to less surprising or more predictable text.
|
||||
# @param eta The learning rate used to update `mu` based on the error between the target and
|
||||
# observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
|
||||
# updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
# @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value
|
||||
# that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`.
|
||||
# In the paper, they use `m = 100`, but you can experiment with different values to see
|
||||
# how it affects the performance of the algorithm.
|
||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy
|
||||
# (`2 * tau`) and is updated in the algorithm based on the error between the target and
|
||||
# observed surprisal.
|
||||
def gptneox_sample_token_mirostat(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
tau: c_float,
|
||||
eta: c_float,
|
||||
m: c_int,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> gptneox_token:
|
||||
return _lib.gptneox_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
|
||||
|
||||
|
||||
_lib.gptneox_sample_token_mirostat.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
c_float,
|
||||
c_int,
|
||||
c_float_p,
|
||||
]
|
||||
_lib.gptneox_sample_token_mirostat.restype = gptneox_token
|
||||
|
||||
|
||||
# @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966.
|
||||
# Uses tokens instead of words.
|
||||
# @param candidates A vector of `gptneox_token_data` containing the candidate tokens,
|
||||
# their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
# @param tau The target cross-entropy (or surprise) value you want to achieve for the generated
|
||||
# text. A higher value corresponds to more surprising or less predictable text, while a lower value
|
||||
# corresponds to less surprising or more predictable text.
|
||||
# @param eta The learning rate used to update `mu` based on the error between the target and
|
||||
# observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
|
||||
# updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy
|
||||
# (`2 * tau`) and is updated in the algorithm based on the error between the target and
|
||||
# observed surprisal.
|
||||
def gptneox_sample_token_mirostat_v2(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
tau: c_float,
|
||||
eta: c_float,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> gptneox_token:
|
||||
return _lib.gptneox_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
|
||||
|
||||
|
||||
_lib.gptneox_sample_token_mirostat_v2.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
c_float,
|
||||
c_float,
|
||||
c_float_p,
|
||||
]
|
||||
_lib.gptneox_sample_token_mirostat_v2.restype = gptneox_token
|
||||
|
||||
|
||||
# @details Selects the token with the highest probability.
|
||||
def gptneox_sample_token_greedy(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
) -> gptneox_token:
|
||||
return _lib.gptneox_sample_token_greedy(ctx, candidates)
|
||||
|
||||
|
||||
_lib.gptneox_sample_token_greedy.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
]
|
||||
_lib.gptneox_sample_token_greedy.restype = gptneox_token
|
||||
|
||||
|
||||
# @details Randomly selects a token from the candidates based on their probabilities.
|
||||
def gptneox_sample_token(
|
||||
ctx: gptneox_context_p,
|
||||
candidates, # type: _Pointer[gptneox_token_data_array]
|
||||
) -> gptneox_token:
|
||||
return _lib.gptneox_sample_token(ctx, candidates)
|
||||
|
||||
|
||||
_lib.gptneox_sample_token.argtypes = [
|
||||
gptneox_context_p,
|
||||
gptneox_token_data_array_p,
|
||||
]
|
||||
_lib.gptneox_sample_token.restype = gptneox_token
|
||||
|
||||
|
||||
# Performance information
|
||||
|
||||
|
||||
def gptneox_print_timings(ctx: gptneox_context_p):
|
||||
_lib.gptneox_print_timings(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_print_timings.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_print_timings.restype = None
|
||||
|
||||
|
||||
def gptneox_reset_timings(ctx: gptneox_context_p):
|
||||
_lib.gptneox_reset_timings(ctx)
|
||||
|
||||
|
||||
_lib.gptneox_reset_timings.argtypes = [gptneox_context_p]
|
||||
_lib.gptneox_reset_timings.restype = None
|
||||
|
||||
|
||||
# Print system information
|
||||
def gptneox_print_system_info() -> bytes:
|
||||
return _lib.gptneox_print_system_info()
|
||||
|
||||
|
||||
_lib.gptneox_print_system_info.argtypes = []
|
||||
_lib.gptneox_print_system_info.restype = c_char_p
|
||||
144
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_types.py
Normal file
144
python/llm/src/bigdl/llm/ggml/model/gptneox/gptneox_types.py
Normal file
|
|
@ -0,0 +1,144 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# ===========================================================================
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama_types.py
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2023 Andrei Betlen
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
from typing import List, Optional, Dict, Union
|
||||
from typing_extensions import TypedDict, NotRequired, Literal
|
||||
|
||||
|
||||
class EmbeddingUsage(TypedDict):
|
||||
prompt_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class EmbeddingData(TypedDict):
|
||||
index: int
|
||||
object: str
|
||||
embedding: List[float]
|
||||
|
||||
|
||||
class Embedding(TypedDict):
|
||||
object: Literal["list"]
|
||||
model: str
|
||||
data: List[EmbeddingData]
|
||||
usage: EmbeddingUsage
|
||||
|
||||
|
||||
class CompletionLogprobs(TypedDict):
|
||||
text_offset: List[int]
|
||||
token_logprobs: List[float]
|
||||
tokens: List[str]
|
||||
top_logprobs: List[Dict[str, float]]
|
||||
|
||||
|
||||
class CompletionChoice(TypedDict):
|
||||
text: str
|
||||
index: int
|
||||
logprobs: Optional[CompletionLogprobs]
|
||||
finish_reason: Optional[str]
|
||||
|
||||
|
||||
class CompletionUsage(TypedDict):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class CompletionChunk(TypedDict):
|
||||
id: str
|
||||
object: Literal["text_completion"]
|
||||
created: int
|
||||
model: str
|
||||
choices: List[CompletionChoice]
|
||||
|
||||
|
||||
class Completion(TypedDict):
|
||||
id: str
|
||||
object: Literal["text_completion"]
|
||||
created: int
|
||||
model: str
|
||||
choices: List[CompletionChoice]
|
||||
usage: CompletionUsage
|
||||
|
||||
|
||||
class ChatCompletionMessage(TypedDict):
|
||||
role: Literal["assistant", "user", "system"]
|
||||
content: str
|
||||
user: NotRequired[str]
|
||||
|
||||
|
||||
class ChatCompletionChoice(TypedDict):
|
||||
index: int
|
||||
message: ChatCompletionMessage
|
||||
finish_reason: Optional[str]
|
||||
|
||||
|
||||
class ChatCompletion(TypedDict):
|
||||
id: str
|
||||
object: Literal["chat.completion"]
|
||||
created: int
|
||||
model: str
|
||||
choices: List[ChatCompletionChoice]
|
||||
usage: CompletionUsage
|
||||
|
||||
|
||||
class ChatCompletionChunkDelta(TypedDict):
|
||||
role: NotRequired[Literal["assistant"]]
|
||||
content: NotRequired[str]
|
||||
|
||||
|
||||
class ChatCompletionChunkChoice(TypedDict):
|
||||
index: int
|
||||
delta: ChatCompletionChunkDelta
|
||||
finish_reason: Optional[str]
|
||||
|
||||
|
||||
class ChatCompletionChunk(TypedDict):
|
||||
id: str
|
||||
model: str
|
||||
object: Literal["chat.completion.chunk"]
|
||||
created: int
|
||||
choices: List[ChatCompletionChunkChoice]
|
||||
Loading…
Reference in a new issue