LLM: Speed-up mixtral in pipeline parallel inference (#10472)

* speed-up mixtral

* fix style
This commit is contained in:
Wang, Jian4 2024-03-22 11:06:28 +08:00 committed by GitHub
parent b9d4280892
commit 34d0a9328c
2 changed files with 191 additions and 2 deletions

View file

@ -1131,7 +1131,7 @@ def _optimize_post(model, lightweight_bmm=False):
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.mixtral import mixtral_moeblock_forward, \
mixtral_attention_forward, mixtral_mlp_forward
mixtral_attention_forward, mixtral_mlp_forward, mixtral_model_forward
convert_forward(model,
module.MixtralAttention,
mixtral_attention_forward)
@ -1144,6 +1144,10 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.MixtralBLockSparseTop2MLP,
mixtral_mlp_forward)
convert_forward(model,
module.MixtralModel,
mixtral_model_forward)
elif model.config.model_type == "phi-msft" and \
hasattr(model.config, "num_local_experts"):
# For phixtral, limit the condition to avoid applying on phi-2 hosted by ModelScope

View file

@ -38,7 +38,12 @@
""" PyTorch Mixtral model."""
import math
from typing import Optional, Tuple
from typing import Optional, Tuple, Union, List
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
)
import torch
from torch import nn
@ -378,3 +383,183 @@ def mixtral_mlp_forward(
current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
current_hidden_states = self.w2(current_hidden_states)
return routing_weights * current_hidden_states
def mixtral_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None
else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False, "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") # noqa
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds") # noqa
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
invalidInputError(
False,
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " # noqa
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask \
if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # noqa
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
# bigdl-llm changes:
#
# Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
#
# When the model is partitioned on two different devices using
# `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
# added to each layer's `forward``, which will result in moving `attention_mask`
# and `position_ids`, which allocated on device:0, to other devices for each
# decoder layer not in device:0.
#
# To avoid this, we move `attention_mask` and `position_ids` to the device of
# the current layer before the forward call, so that the moving is only done once
# for each devices other than devie:0.
#
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() \
if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] # noqa
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)