parent
ba01b85c13
commit
336dfc04b1
4 changed files with 53 additions and 6 deletions
|
|
@ -18,6 +18,8 @@ conda activate llm
|
|||
|
||||
# install the latest ipex-llm nightly build with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -27,9 +29,17 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
Setup local MODEL_PATH and run python code to download the right version of model from hugginface.
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0")
|
||||
```
|
||||
Then run the example with the downloaded model
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
|
@ -46,7 +56,7 @@ Arguments info:
|
|||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```cmd
|
||||
python ./generate.py
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
|
|
@ -59,7 +69,7 @@ source ipex-llm-init
|
|||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py
|
||||
numactl -C 0-47 -m 0 python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
|
|
|
|||
|
|
@ -19,6 +19,8 @@ conda activate llm
|
|||
|
||||
# install the latest ipex-llm nightly build with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -28,15 +30,30 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
After setting up the Python environment, you could run the example by following steps.
|
||||
Setup local MODEL_PATH and run python code to download the right version of model from hugginface.
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0")
|
||||
```
|
||||
Then run the example with the downloaded model
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM2 model (e.g. `internlm/internlm2-chat-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm2-chat-7b'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||
```cmd
|
||||
python ./generate.py --prompt 'What is AI?'
|
||||
python ./generate.py --prompt 'What is AI?' --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
|
|
@ -50,7 +67,7 @@ source ipex-llm-init
|
|||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
|
||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
|
|
|
|||
|
|
@ -14,6 +14,8 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -24,6 +26,8 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
@ -100,8 +104,14 @@ set SYCL_CACHE_PERSISTENT=1
|
|||
|
||||
> [!NOTE]
|
||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
### 4. Running examples
|
||||
Setup local MODEL_PATH and run python code to download the right version of model from hugginface.
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0")
|
||||
```
|
||||
Then run the example with the downloaded model
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
|
|
|||
|
|
@ -14,6 +14,8 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -24,6 +26,8 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==3.36.2
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
@ -100,8 +104,14 @@ set SYCL_CACHE_PERSISTENT=1
|
|||
|
||||
> [!NOTE]
|
||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
### 4. Running examples
|
||||
Setup local MODEL_PATH and run python code to download the right version of model from hugginface.
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0")
|
||||
```
|
||||
Then run the example with the downloaded model
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
|
|
|||
Loading…
Reference in a new issue