added minicpm cpu examples (#12027)
* minicpm cpu examples * add link for minicpm-2
This commit is contained in:
		
							parent
							
								
									a0c73c26d8
								
							
						
					
					
						commit
						32e8362da7
					
				
					 4 changed files with 205 additions and 2 deletions
				
			
		| 
						 | 
					@ -317,7 +317,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
				
			||||||
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
 | 
					| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
 | 
				
			||||||
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
 | 
					| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
 | 
				
			||||||
| MiniCPM-V |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
 | 
					| MiniCPM-V |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
 | 
				
			||||||
| MiniCPM-V-2 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
					| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
				
			||||||
| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
					| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
				
			||||||
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
					| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,101 @@
 | 
				
			||||||
 | 
					# MiniCPM-V-2
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2 models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) as a reference MiniCPM-V-2 model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `chat()` API
 | 
				
			||||||
 | 
					In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					On Linux:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.11
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# install ipex-llm with 'all' option
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
 | 
					pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
 | 
					pip install peft timm
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					On Windows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					conda create -n llm python=3.11
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[all]
 | 
				
			||||||
 | 
					pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
 | 
					pip install peft timm
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- chat without streaming mode:
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  python ./chat.py --prompt 'What is in the image?'
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					- chat in streaming mode:
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  python ./chat.py --prompt 'What is in the image?' --stream
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!TIP]
 | 
				
			||||||
 | 
					> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 model (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
 | 
				
			||||||
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
 | 
					- `--stream`: flag to chat in streaming mode
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					python ./chat.py 
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set IPEX-LLM env variables
 | 
				
			||||||
 | 
					source ipex-llm-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./chat.py
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
 | 
					#### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
 | 
					-------------------- Input Prompt --------------------
 | 
				
			||||||
 | 
					What is in the image?
 | 
				
			||||||
 | 
					-------------------- Chat Output --------------------
 | 
				
			||||||
 | 
					The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall.
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
 | 
					-------------------- Input Prompt --------------------
 | 
				
			||||||
 | 
					图片里有什么?
 | 
				
			||||||
 | 
					-------------------- Stream Chat Output --------------------
 | 
				
			||||||
 | 
					图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,102 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					from ipex_llm.transformers import AutoModel
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V-2_6 model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the MiniCPM-V-2_6 model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
 | 
					                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
				
			||||||
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--stream', action='store_true',
 | 
				
			||||||
 | 
					                        help='Whether to chat in streaming mode')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                      load_in_low_bit="asym_int4",
 | 
				
			||||||
 | 
					                                      optimize_model=True,
 | 
				
			||||||
 | 
					                                      trust_remote_code=True,
 | 
				
			||||||
 | 
					                                      use_cache=True,
 | 
				
			||||||
 | 
					                                      torch_dtype=torch.float32,
 | 
				
			||||||
 | 
					                                      modules_to_not_convert=["vpm", "resampler"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    model.eval()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query = args.prompt
 | 
				
			||||||
 | 
					    if os.path.exists(image_path):
 | 
				
			||||||
 | 
					       image = Image.open(image_path).convert('RGB')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
				
			||||||
 | 
					    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if args.stream:
 | 
				
			||||||
 | 
					        res, context, _ = model.chat(
 | 
				
			||||||
 | 
					            image=image,
 | 
				
			||||||
 | 
					            msgs=msgs,
 | 
				
			||||||
 | 
					            context= None,
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					            stream=True
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					        print(image_path)
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(args.prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Stream Chat Output', '-'*20)
 | 
				
			||||||
 | 
					        for new_text in res:
 | 
				
			||||||
 | 
					            print(new_text, flush=True, end='')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        res, context, _ = model.chat(
 | 
				
			||||||
 | 
					            image=image,
 | 
				
			||||||
 | 
					            msgs=msgs,
 | 
				
			||||||
 | 
					            context=None,
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					        print(image_path)
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(args.prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Chat Output', '-'*20)
 | 
				
			||||||
 | 
					        print(res)
 | 
				
			||||||
| 
						 | 
					@ -28,7 +28,7 @@ conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all]
 | 
					pip install --pre --upgrade ipex-llm[all]
 | 
				
			||||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
					pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
pip install transformers==4.40.0 trl
 | 
					pip install transformers==4.41.0 trl
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Run
 | 
					### 2. Run
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue