LLM : Support embedding quantization (only q2k now) (#10170)

* basic logic added

* basic support

* support save&load, update mixed strategy

* fix style

* use int8 for lm_head

* add check for xpu
This commit is contained in:
Ruonan Wang 2024-02-20 16:56:57 +08:00 committed by GitHub
parent eca69a6022
commit 3288acb8de
4 changed files with 128 additions and 31 deletions

View file

@ -191,10 +191,10 @@ def convert_gptq(module, awq=False, llm_awq=False):
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None, convert_shape_only=False,
cpu_embedding=False, prefix_name='',
imatrix_data=None):
imatrix_data=None, embedding_qtype=None):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, \
FP16Linear, BF16Linear
from bigdl.llm.transformers.embedding import LLMEmbedding
from bigdl.llm.transformers.embedding import LLMEmbedding, LowBitEmbedding
has_been_replaced = False
for name, module in model.named_children():
@ -323,6 +323,32 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
sparse=module.sparse,
_weight=module.weight.data,
)
elif type(module) == nn.Embedding and embedding_qtype is not None:
q_embedding = LowBitEmbedding(
num_embeddings=module.num_embeddings,
embedding_dim=module.embedding_dim,
padding_idx=module.padding_idx,
max_norm=module.max_norm,
norm_type=module.norm_type,
scale_grad_by_freq=module.scale_grad_by_freq,
sparse=module.sparse,
_weight=module.weight.data,
qtype=embedding_qtype,
)
device = module.weight.data.device
# Copy the weights
paramsLowBit = FP4Params(data=module.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
convert_shape_only=convert_shape_only,
qtype=embedding_qtype,
in_features=module.embedding_dim).to(device)
q_embedding._parameters['weight'] = paramsLowBit
model._modules[name] = q_embedding
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
module.weight = None
# Remove the last key for recursion
if len(list(module.children())) > 0:
@ -334,7 +360,8 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
convert_shape_only,
cpu_embedding,
prefix_name=prefix_name + '.' + name if prefix_name != '' else name,
imatrix_data=imatrix_data
imatrix_data=imatrix_data,
embedding_qtype=embedding_qtype
)
has_been_replaced = _flag or has_been_replaced
return model, has_been_replaced
@ -512,7 +539,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
convert_shape_only=False, device="cpu",
modules_to_not_convert=None, cpu_embedding=False,
lightweight_bmm=False, torch_dtype="auto",
imatrix_data=None):
imatrix_data=None, embedding_qtype=None):
logger.info(f"Converting the current model to "
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
f"format......")
@ -535,6 +562,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
model, qtype, modules_to_not_convert,
None, convert_shape_only, cpu_embedding,
imatrix_data=imatrix_data,
embedding_qtype=embedding_qtype
)
if not has_been_replaced:
warnings.warn(

View file

@ -20,6 +20,8 @@ from torch import Tensor
from torch.nn import functional as F
from torch.nn import Parameter
from typing import Optional
from bigdl.llm.transformers.low_bit_linear import FP4Params
from bigdl.llm.utils.common import invalidInputError
# To prevent insufficient available memory when moving embedding from XPU back to CPU,
@ -72,3 +74,39 @@ class LLMEmbedding(torch.nn.Embedding):
def forward(self, x: Tensor):
return super().forward(x.to('cpu')).to(x.device)
class LowBitEmbedding(torch.nn.Embedding):
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
_freeze: bool = False,
device=None, dtype=None,
qtype=None) -> None:
super().__init__(num_embeddings, embedding_dim, padding_idx,
max_norm, norm_type, scale_grad_by_freq, sparse,
_weight, device, dtype)
self.weight = FP4Params(self.weight.data,
requires_grad=False,
quantized=False, _shape=None, qtype=qtype)
self.embedding_dim = embedding_dim
def forward(self, x: Tensor):
invalidInputError(x.device.type == "xpu",
"`LowBitEmbedding` only supports GPU now.")
try:
import intel_extension_for_pytorch
import linear_q4_0
except ModuleNotFoundError:
invalidInputError(False,
"Please `pip install bigdl_core_xe` first.")
result = linear_q4_0.dequantize_rows(x.contiguous(), self.weight.data,
self.weight.qtype, self.embedding_dim)
return result

View file

@ -129,6 +129,8 @@ class _BaseAutoModelClass:
added to llama.cpp.
:param model_hub: str value, options are ``'huggingface'`` and ``'modelscope'``,
specify the model hub. Default to be ``'huggingface'``.
:param embedding_qtype: str value, options are ``'q2_k'`` now. Default to be None.
Relevant low bit optimizations will be applied to nn.Embedding layer.
:return: a model instance
"""
pretrained_model_name_or_path = kwargs.get("pretrained_model_name_or_path", None) \
@ -159,6 +161,7 @@ class _BaseAutoModelClass:
user_quantization_config = kwargs.pop("quantization_config", None)
speculative = kwargs.pop("speculative", False)
torch_dtype = kwargs.pop("torch_dtype", None)
embedding_qtype = kwargs.pop("embedding_qtype", None)
if user_quantization_config is not None and \
"BitsAndBytesConfig" in str(user_quantization_config.__class__):
@ -278,9 +281,15 @@ class _BaseAutoModelClass:
if q_k in ["iq2_xxs", "iq2_xs"]:
invalidInputError(imatrix_file is not None,
"For iq2_xxs and iq2_xs quantization, imatrix is needed.")
cpu_embedding = kwargs.get("cpu_embedding", False)
# for 2bit, default use embedding_quantization
if q_k in ["iq2_xxs", "iq2_xs", "q2_k"] and not cpu_embedding and \
embedding_qtype is None:
embedding_qtype = "q2_k"
if imatrix_file is not None:
imatrix_data = load_imatrix_data(imatrix_file)
kwargs['imatrix_data'] = imatrix_data
kwargs["imatrix_data"] = imatrix_data
kwargs["embedding_qtype"] = embedding_qtype
model = cls.load_convert(q_k, optimize_model, *args, **kwargs)
if speculative:
@ -339,6 +348,9 @@ class _BaseAutoModelClass:
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
quant_config = kwargs.pop("quantization_config", None)
imatrix_data = kwargs.pop("imatrix_data", None)
embedding_qtype = kwargs.pop("embedding_qtype", None)
if embedding_qtype is not None:
embedding_qtype = ggml_tensor_qtype[embedding_qtype]
_args = copy.deepcopy(args)
_kwargs = copy.deepcopy(kwargs)
awq_config = None
@ -400,7 +412,8 @@ class _BaseAutoModelClass:
modules_to_not_convert=modules_to_not_convert,
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm,
torch_dtype=kwargs.get("torch_dtype", 'auto'),
imatrix_data=imatrix_data)
imatrix_data=imatrix_data,
embedding_qtype=embedding_qtype)
model.config.update({"bigdl_transformers_low_bit": q_k})
# enable tie_word_embeddings for MPT
@ -469,6 +482,7 @@ class _BaseAutoModelClass:
offload_folder = kwargs.pop("offload_folder", None)
offload_state_dict = kwargs.pop("offload_state_dict", False)
torch_dtype = kwargs.pop("torch_dtype", "auto")
embedding_qtype = kwargs.pop("embedding_qtype", None)
sharded_metadata = None
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path)
@ -488,6 +502,10 @@ class _BaseAutoModelClass:
optimize_model = kwargs.pop("optimize_model", True)
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
if bigdl_transformers_low_bit in ["iq2_xxs", "iq2_xs", "q2_k"] and not cpu_embedding:
embedding_qtype = "q2_k"
if embedding_qtype is not None:
embedding_qtype = ggml_tensor_qtype[embedding_qtype]
has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
has_local_code = type(config) in cls.HF_Model._model_mapping.keys()
@ -572,7 +590,8 @@ class _BaseAutoModelClass:
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
modules_to_not_convert=modules_to_not_convert,
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm)
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm,
embedding_qtype=embedding_qtype)
if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]

View file

@ -224,16 +224,10 @@ def load_imatrix_data(imatrix_file):
return imatrix_data
def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data):
if qtype in [ggml_tensor_qtype["iq2_xxs"], ggml_tensor_qtype["iq2_xs"],
ggml_tensor_qtype["q2_k"]] and imatrix_data is not None:
# For quantization which needs importance matrix
# module name preprocess
def module_name_process(full_module_name):
# full name maybe model.layers.31.self_attn.o_proj
# TODO: just consider llama/mistral here
# TODO: how to better aligned and generalize
module_name = full_module_name.split('.')
cur_qtype = qtype
if len(module_name) == 5:
layer = module_name[2]
cur_module = module_name[-1][:-5]
@ -242,19 +236,37 @@ def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data):
new_module_name = module_name[0]
layer = None
cur_module = None
return new_module_name, layer, cur_module
def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data):
cur_qtype = qtype
if qtype in [ggml_tensor_qtype["iq2_xxs"], ggml_tensor_qtype["iq2_xs"]]:
# For quantization which needs importance matrix
new_module_name, layer, cur_module = module_name_process(full_module_name)
# custom mixed quantization strategy
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]):
cur_qtype = ggml_tensor_qtype['q2_k']
if imatrix_data is not None and new_module_name in imatrix_data:
cur_imatrix = imatrix_data[new_module_name]
# custom mixed quantization strategy
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]) \
or new_module_name == 'lm_head':
cur_qtype = ggml_tensor_qtype['sym_int4']
else:
# if no imatrix is available, use fp8 for lm_head
cur_imatrix = None
# custom mixed quantization strategy
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]) \
or new_module_name == 'lm_head':
cur_qtype = ggml_tensor_qtype['sym_int4']
if new_module_name == 'lm_head':
cur_qtype = ggml_tensor_qtype['sym_int8']
return cur_qtype, cur_imatrix
elif qtype == ggml_tensor_qtype["q2_k"]:
new_module_name, layer, cur_module = module_name_process(full_module_name)
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]):
# TODO: q2_k need others k-quants type here
cur_qtype = ggml_tensor_qtype['q2_k']
if imatrix_data is not None and new_module_name in imatrix_data:
cur_imatrix = imatrix_data[new_module_name]
else:
# if no imatrix is available, use fp8 for lm_head
cur_imatrix = None
if new_module_name == 'lm_head':
cur_qtype = ggml_tensor_qtype['sym_int8']
else:
return qtype, None