diff --git a/docker/llm/README.md b/docker/llm/README.md new file mode 100644 index 00000000..757065eb --- /dev/null +++ b/docker/llm/README.md @@ -0,0 +1,90 @@ +## Getting started with BigDL LLM on Windows + +### Install docker + +New users can quickly get started with Docker using this [official link](https://www.docker.com/get-started/). + +For Windows users, make sure Hyper-V is enabled on your computer. The instructions for installing on Windows can be accessed from [here](https://docs.docker.com/desktop/install/windows-install/). + + +### Pull bigdl-llm-cpu image + +To pull image from hub, you can execute command on console: +```powershell +docker pull intelanalytics/bigdl-llm-cpu:2.4.0-SNAPSHOT +``` +to check if the image is successfully downloaded, you can use: +```powershell +docker images | sls intelanalytics/bigdl-llm-cpu:2.4.0-SNAPSHOT +``` + + +### Start bigdl-llm-cpu container + +To run the image and do inference, you could create and run a bat script on Windows. + +An example could be: +```bat +@echo off +set DOCKER_IMAGE=intelanalytics/bigdl-llm-cpu:2.4.0-SNAPSHOT +set CONTAINER_NAME=my_container +set MODEL_PATH=D:/llm/models[change to your model path] + +:: Run the Docker container +docker run -itd ^ + --net=host ^ + --cpuset-cpus="0-7" ^ + --cpuset-mems="0" ^ + --memory="8G" ^ + --name=%CONTAINER_NAME% ^ + -v %MODEL_PATH%:/llm/models ^ + %DOCKER_IMAGE% +``` + +After the container is booted, you could get into the container through `docker exec`. +``` +docker exec -it my_container bash +``` + +To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4). + + +### Getting started with chat + +chat.py can be used to initiate a conversation with a specified model. The file is under directory '/llm'. + +You can download models and bind the model directory from host machine to container when start a container. + +After entering the container through `docker exec`, you can run chat.py by: +```bash +cd /llm +python chat.py --model-path YOUR_MODEL_PATH +``` +If your model is chatglm-6b and mounted on /llm/models, you can excute: +```bash +python chat.py --model-path /llm/models/chatglm-6b +``` +Here is a demostration: +
+            
 
+
+
+            
 
+
+