refactor baichuan2-13b (#11064)
This commit is contained in:
		
							parent
							
								
									67db925112
								
							
						
					
					
						commit
						31ce3e0c13
					
				
					 2 changed files with 88 additions and 234 deletions
				
			
		| 
						 | 
				
			
			@ -23,19 +23,13 @@ from typing import Optional, Tuple
 | 
			
		|||
import torch
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from torch.nn import functional as F
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
 | 
			
		||||
    append_kv_cache, is_enough_kv_cache_room_4_31
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
import warnings
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pre_compute_inv_freq(module: torch.nn.Module):
 | 
			
		||||
| 
						 | 
				
			
			@ -114,52 +108,16 @@ def baichuan_attention_forward_7b(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv
 | 
			
		||||
    use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
 | 
			
		||||
    if use_quantize_kv:
 | 
			
		||||
        if past_key_value is None:
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                bsz, self.num_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            k_cache, v_cache = past_key_value
 | 
			
		||||
        key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                       key_states, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        if past_key_value is None:
 | 
			
		||||
            max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            k_cache, v_cache = init_kv_cache(bsz,
 | 
			
		||||
                                             self.num_heads,
 | 
			
		||||
                                             self.head_dim,
 | 
			
		||||
                                             kv_seq_len,
 | 
			
		||||
                                             max_cache_length,
 | 
			
		||||
                                             dtype=key_states.dtype,
 | 
			
		||||
                                             device=device)
 | 
			
		||||
            k_cache[...] = key_states
 | 
			
		||||
            v_cache[...] = value_states
 | 
			
		||||
            key_states = k_cache
 | 
			
		||||
            value_states = v_cache
 | 
			
		||||
        else:
 | 
			
		||||
            k_cache, v_cache = past_key_value
 | 
			
		||||
            if k_cache.stride(1) < kv_seq_len * k_cache.size(3):
 | 
			
		||||
                max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
                new_k_cache, new_v_cache = extend_kv_cache(bsz,
 | 
			
		||||
                                                           self.num_heads,
 | 
			
		||||
                                                           self.head_dim,
 | 
			
		||||
                                                           k_cache.size(2),
 | 
			
		||||
                                                           max_cache_length,
 | 
			
		||||
                                                           dtype=k_cache.dtype,
 | 
			
		||||
                                                           device=device)
 | 
			
		||||
                new_k_cache[...] = k_cache
 | 
			
		||||
                new_v_cache[...] = v_cache
 | 
			
		||||
                k_cache = new_k_cache
 | 
			
		||||
                v_cache = new_v_cache
 | 
			
		||||
            key_states, value_states = append_kv_cache(k_cache, v_cache, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    key_states, value_states = update_past_key_value(
 | 
			
		||||
        past_key_value, key_states, value_states,
 | 
			
		||||
        kv_seq_len, use_quantize_kv, device
 | 
			
		||||
    )
 | 
			
		||||
    past_key_value = (key_states, value_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    if self.training:
 | 
			
		||||
        warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad and \
 | 
			
		||||
            use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
| 
						 | 
				
			
			@ -211,207 +169,56 @@ def baichuan_attention_forward_13b(
 | 
			
		|||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.W_pack, hidden_states):
 | 
			
		||||
        forward_function = baichuan_attention_forward_13b_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = baichuan_attention_forward_13b_origin
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self=self,
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        past_key_value=past_key_value,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def baichuan_attention_forward_13b_quantized(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    proj = self.W_pack(hidden_states)
 | 
			
		||||
    proj = (
 | 
			
		||||
        proj.unflatten(-1, (3, self.hidden_size))
 | 
			
		||||
        .unsqueeze(0)
 | 
			
		||||
        .transpose(0, -2)
 | 
			
		||||
        .squeeze(-2)
 | 
			
		||||
    )
 | 
			
		||||
    query_states = (
 | 
			
		||||
        proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
    key_states = (
 | 
			
		||||
        proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
    value_states = (
 | 
			
		||||
        proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
    qkv = self.W_pack(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_heads,
 | 
			
		||||
                                                        self.num_heads], dim=1)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
            bsz, self.num_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        k_cache, v_cache = past_key_value
 | 
			
		||||
    key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                   key_states, value_states)
 | 
			
		||||
    past_key_value = (key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    if query_states.size(2) != 1 or device.type != 'xpu':
 | 
			
		||||
        key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                        query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
			
		||||
    else:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
			
		||||
 | 
			
		||||
    attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        if q_len == 1:  # inference with cache
 | 
			
		||||
            if len(attention_mask.size()) == 4:
 | 
			
		||||
                attention_mask = attention_mask[:, :, -1:, :]
 | 
			
		||||
            else:
 | 
			
		||||
                attention_mask = attention_mask[:, -1:, :]
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                 torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
    attn_weights = attn_weights.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
    if query_states.size(2) != 1 or device.type != 'xpu':
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def baichuan_attention_forward_13b_origin(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    proj = self.W_pack(hidden_states)
 | 
			
		||||
    proj = (
 | 
			
		||||
        proj.unflatten(-1, (3, self.hidden_size))
 | 
			
		||||
        .unsqueeze(0)
 | 
			
		||||
        .transpose(0, -2)
 | 
			
		||||
        .squeeze(-2)
 | 
			
		||||
    )
 | 
			
		||||
    query_states = (
 | 
			
		||||
        proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
    key_states = (
 | 
			
		||||
        proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
    value_states = (
 | 
			
		||||
        proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    enough_kv_room = True
 | 
			
		||||
    kv_seq_len = key_states.shape[2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
    # if past_key_value is not None:
 | 
			
		||||
    #     # reuse k, v, self_attention
 | 
			
		||||
    #     key_states = torch.cat([past_key_value[0], key_states], dim=2)
 | 
			
		||||
    #     value_states = torch.cat([past_key_value[1], value_states], dim=2)
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = past_key_value[0]
 | 
			
		||||
        cache_v = past_key_value[1]
 | 
			
		||||
        if not enough_kv_room:
 | 
			
		||||
            if device.type == 'xpu':
 | 
			
		||||
                torch.xpu.empty_cache()
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key_states.dtype,
 | 
			
		||||
                                                         device=device)
 | 
			
		||||
        new_key_states[:] = key_states
 | 
			
		||||
        new_value_states[:] = value_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[2]
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv
 | 
			
		||||
    use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
 | 
			
		||||
    key_states, value_states = update_past_key_value(
 | 
			
		||||
        past_key_value, key_states, value_states,
 | 
			
		||||
        kv_seq_len, use_quantize_kv, device
 | 
			
		||||
    )
 | 
			
		||||
    past_key_value = (key_states, value_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    if self.training:
 | 
			
		||||
        warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.matmul(
 | 
			
		||||
        query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3)
 | 
			
		||||
    ) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        if q_len == 1:  # inference with cache
 | 
			
		||||
            if len(attention_mask.size()) == 4:
 | 
			
		||||
                attention_mask = attention_mask[:, :, -1:, :]
 | 
			
		||||
            else:
 | 
			
		||||
                attention_mask = attention_mask[:, -1:, :]
 | 
			
		||||
        if attention_mask.shape[-2] == attn_weights.shape[-2]:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        if len(attention_mask.size()) == 4:
 | 
			
		||||
            attention_mask = attention_mask[:, :, -q_len:, :]
 | 
			
		||||
        else:
 | 
			
		||||
            # support for Baichuan/Baichuan2 13B Chat running speculative decoding
 | 
			
		||||
            # split attention mask on dim -2
 | 
			
		||||
            split_sizes = [attention_mask.shape[-2] - attn_weights.shape[-2],
 | 
			
		||||
                           attn_weights.shape[-2]]
 | 
			
		||||
            # the last chunk of splited is the new attention mask
 | 
			
		||||
            attention_mask = attention_mask.split(split_sizes, dim=-2)[-1]
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.max(
 | 
			
		||||
            attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
 | 
			
		||||
        )
 | 
			
		||||
            attention_mask = attention_mask[:, None, -q_len:, :]
 | 
			
		||||
 | 
			
		||||
    if use_quantize_kv and q_len == 1:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3))
 | 
			
		||||
    attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
 | 
			
		||||
 | 
			
		||||
    if use_quantize_kv and q_len == 1:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,6 +24,7 @@ from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_
 | 
			
		|||
from ipex_llm.transformers.convert import is_deepspeed_available
 | 
			
		||||
 | 
			
		||||
FP8_KV_ALLOC_LENGTH = 512
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
# used in fused mlp forward
 | 
			
		||||
SILU = 0
 | 
			
		||||
| 
						 | 
				
			
			@ -426,3 +427,49 @@ def fp16_fusion_check(proj, x, training):
 | 
			
		|||
    if device_type != "pvc":
 | 
			
		||||
        return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def update_past_key_value(past_key_value, key_states, value_states,
 | 
			
		||||
                          kv_seq_len, use_quantize_kv, device):
 | 
			
		||||
    bsz, num_heads, _, head_dim = key_states.shape
 | 
			
		||||
    if use_quantize_kv:
 | 
			
		||||
        if past_key_value is None:
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                bsz, num_heads, kv_seq_len, head_dim,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            k_cache, v_cache = past_key_value
 | 
			
		||||
        key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                       key_states, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        if past_key_value is None:
 | 
			
		||||
            max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            k_cache, v_cache = init_kv_cache(bsz,
 | 
			
		||||
                                             num_heads,
 | 
			
		||||
                                             head_dim,
 | 
			
		||||
                                             kv_seq_len,
 | 
			
		||||
                                             max_cache_length,
 | 
			
		||||
                                             dtype=key_states.dtype,
 | 
			
		||||
                                             device=device)
 | 
			
		||||
            k_cache[...] = key_states
 | 
			
		||||
            v_cache[...] = value_states
 | 
			
		||||
            key_states = k_cache
 | 
			
		||||
            value_states = v_cache
 | 
			
		||||
        else:
 | 
			
		||||
            k_cache, v_cache = past_key_value
 | 
			
		||||
            if k_cache.stride(1) < kv_seq_len * k_cache.size(3):
 | 
			
		||||
                max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
                new_k_cache, new_v_cache = extend_kv_cache(bsz,
 | 
			
		||||
                                                           num_heads,
 | 
			
		||||
                                                           head_dim,
 | 
			
		||||
                                                           k_cache.size(2),
 | 
			
		||||
                                                           max_cache_length,
 | 
			
		||||
                                                           dtype=k_cache.dtype,
 | 
			
		||||
                                                           device=device)
 | 
			
		||||
                new_k_cache[...] = k_cache
 | 
			
		||||
                new_v_cache[...] = v_cache
 | 
			
		||||
                k_cache = new_k_cache
 | 
			
		||||
                v_cache = new_v_cache
 | 
			
		||||
            key_states, value_states = append_kv_cache(k_cache, v_cache, key_states, value_states)
 | 
			
		||||
    return key_states, value_states
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue