Add cpu and gpu examples for SOLAR-10.7B (#9821)

This commit is contained in:
Jinyi Wan 2024-01-05 09:50:28 +08:00 committed by GitHub
parent ad6b182916
commit 3147ebe63d
9 changed files with 578 additions and 0 deletions

View file

@ -74,6 +74,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Distil-Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/distil-whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/distil-whisper) | | Distil-Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/distil-whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/distil-whisper) |
| Yi | [link](example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](example/GPU/HF-Transformers-AutoModels/Model/yi) | | Yi | [link](example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](example/GPU/HF-Transformers-AutoModels/Model/yi) |
| BlueLM | [link](example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](example/GPU/HF-Transformers-AutoModels/Model/bluelm) | | BlueLM | [link](example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](example/GPU/HF-Transformers-AutoModels/Model/bluelm) |
| Solar-10.7B | [link](example/CPU/HF-Transformers-AutoModels/Model/solar-10.7b) | [link](example/GPU/HF-Transformers-AutoModels/Model/solar-10.7b) |
### Working with `bigdl-llm` ### Working with `bigdl-llm`

View file

@ -0,0 +1,80 @@
# SOLAR-10.7B
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on SOLAR-10.7B models. For illustration purposes, we utilize the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) as a reference SOLAR-10.7B model.
## 0. Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a SOLAR-10.7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install transformers==4.35.2 # required by SOLAR-10.7B
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the SOLAR-10.7B model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'upstage/SOLAR-10.7B-Instruct-v1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the SOLAR-10.7B model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
```log
Inference time: XXXX s
-------------------- Prompt --------------------
<s>### User:
What is AI?
### Assistant:
-------------------- Output --------------------
### User:
What is AI?
### Assistant:
AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of
```
```log
Inference time: XXXX s
-------------------- Prompt --------------------
<s>### User:
AI是什么
### Assistant:
-------------------- Output --------------------
### User:
AI是什么
### Assistant:
AI, 全称为人工智能(Artificial Intelligence),是计算机科学、心理学、语言学、逻
```

View file

@ -0,0 +1,71 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# prompt format is tuned based on the output example in this link:
# https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0#usage-instructions
SOLAR_PROMPT_FORMAT = "<s>### User:\n{prompt}\n### Assistant:\n"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for SOLAR-10.7B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="upstage/SOLAR-10.7B-Instruct-v1.0",
help='The huggingface repo id for the SOLAR-10.7B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = SOLAR_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,70 @@
# SOLAR-10.7B
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate SOLAR-10.7B models. For illustration purposes, we utilize the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) as a reference SOLAR-10.7B model.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a SOLAR-10.7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install transformers==4.35.2 # required by SOLAR-10.7B
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the SOLAR-10.7B model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'upstage/SOLAR-10.7B-Instruct-v1.0'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.4 Sample Output
#### [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
```log
Inference time: XXXX s
-------------------- Output --------------------
### User:
What is AI?
### Assistant:
AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of
```
```log
Inference time: XXXX s
-------------------- Output --------------------
### User:
AI是什么
### Assistant:
AI, 全称为人工智能(Artificial Intelligence),是计算机科学、心理学、语言学、逻
```

View file

@ -0,0 +1,65 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
# prompt format is tuned based on the output example in this link:
# https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0#usage-instructions
SOLAR_PROMPT_FORMAT = "<s>### User:\n{prompt}\n### Assistant:\n"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for SOLAR-10.7B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="upstage/SOLAR-10.7B-Instruct-v1.0",
help='The huggingface repo id for the SOLAR-10.7B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="cpu",
torch_dtype=torch.float16,
trust_remote_code=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = SOLAR_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,72 @@
# SOLAR-10.7B
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on SOLAR-10.7B models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) as a reference SOLAR-10.7B model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a SOLAR-10.7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.35.2 # required by SOLAR-10.7B
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```bash
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the SOLAR-10.7B model (e.g `upstage/SOLAR-10.7B-Instruct-v1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'upstage/SOLAR-10.7B-Instruct-v1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [upstage/SOLAR-10.7B-Instruct-v1.0t](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
```log
Inference time: XXXX s
-------------------- Prompt --------------------
<s>### User:
What is AI?
### Assistant:
-------------------- Output --------------------
### User:
What is AI?
### Assistant:
AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of
```
```log
Inference time: XXXX s
-------------------- Prompt --------------------
<s>### User:
AI是什么
### Assistant:
-------------------- Output --------------------
### User:
AI是什么
### Assistant:
AI, 全称为人工智能(Artificial Intelligence),是计算机科学、心理学、语言学、逻
```

View file

@ -0,0 +1,79 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# prompt format is tuned based on the output example in this link:
# https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0#usage-instructions
SOLAR_PROMPT_FORMAT = "<s>### User:\n{prompt}\n### Assistant:\n"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for SOLAR-10.7B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="upstage/SOLAR-10.7B-Instruct-v1.0",
help='The huggingface repo id for the SOLAR-10.7B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
use_cache=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = SOLAR_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,65 @@
# SOLAR-10.7B
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate SOLAR-10.7B models. For illustration purposes, we utilize the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) as a reference SOLAR-10.7B model.
## Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a SOLAR-10.7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.35.2 # required by SOLAR-10.7B
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```bash
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the SOLAR-10.7B model (e.g `upstage/SOLAR-10.7B-Instruct-v1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'upstage/SOLAR-10.7B-Instruct-v1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.3 Sample Output
#### [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
```log
Inference time: XXXX s
-------------------- Output --------------------
### User:
What is AI?
### Assistant:
AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of
```
```log
Inference time: XXXX s
-------------------- Output --------------------
### User:
AI是什么
### Assistant:
AI, 全称为人工智能(Artificial Intelligence),是计算机科学、心理学、语言学、逻
```

View file

@ -0,0 +1,75 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
# prompt format is tuned based on the output example in this link:
# https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0#usage-instructions
SOLAR_PROMPT_FORMAT = "<s>### User:\n{prompt}\n### Assistant:\n"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for SOLAR-10.7B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="upstage/SOLAR-10.7B-Instruct-v1.0",
help='The huggingface repo id for the SOLAR-10.7B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = SOLAR_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)