Merge pull request #9108 from Zhengjin-Wang/main

Add instruction for chat.py in bigdl-llm-cpu
This commit is contained in:
Lilac09 2023-10-10 16:40:52 +08:00 committed by GitHub
commit 30e3c196f3
2 changed files with 36 additions and 1 deletions

View file

@ -22,7 +22,8 @@ RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \
pip install --pre --upgrade bigdl-llm[all] && \ pip install --pre --upgrade bigdl-llm[all] && \
pip install --pre --upgrade bigdl-nano && \ pip install --pre --upgrade bigdl-nano && \
# Download chat.py script # Download chat.py script
wget -P /root https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/portable-executable/chat.py && \ pip install --upgrade colorama && \
wget -P /root https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/portable-zip/chat.py && \
export PYTHONUNBUFFERED=1 export PYTHONUNBUFFERED=1
ENTRYPOINT ["/bin/bash"] ENTRYPOINT ["/bin/bash"]

View file

@ -32,3 +32,37 @@ sudo docker run -itd \
After the container is booted, you could get into the container through `docker exec`. After the container is booted, you could get into the container through `docker exec`.
To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4). To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4).
### Use chat.py
chat.py can be used to initiate a conversation with a specified model. The file is under directory '/root'.
You can download models and bind the model directory from host machine to container when start a container.
Here is an example:
```bash
export DOCKER_IMAGE=intelanalytics/bigdl-llm-cpu:2.4.0-SNAPSHOT
export MODEL_PATH=/home/llm/models
sudo docker run -itd \
--net=host \
--cpuset-cpus="0-47" \
--cpuset-mems="0" \
--memory="32G" \
--name=CONTAINER_NAME \
--shm-size="16g" \
-v $MODEL_PATH:/llm/models/
$DOCKER_IMAGE
```
After entering the container through `docker exec`, you can run chat.py by:
```bash
cd /root
python chat.py --model-path YOUR_MODEL_PATH
```
In the example above, it can be:
```bash
cd /root
python chat.py --model-path /llm/models/MODEL_NAME
```