Merge pull request #9108 from Zhengjin-Wang/main
Add instruction for chat.py in bigdl-llm-cpu
This commit is contained in:
commit
30e3c196f3
2 changed files with 36 additions and 1 deletions
|
|
@ -22,7 +22,8 @@ RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
||||||
pip install --pre --upgrade bigdl-llm[all] && \
|
pip install --pre --upgrade bigdl-llm[all] && \
|
||||||
pip install --pre --upgrade bigdl-nano && \
|
pip install --pre --upgrade bigdl-nano && \
|
||||||
# Download chat.py script
|
# Download chat.py script
|
||||||
wget -P /root https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/portable-executable/chat.py && \
|
pip install --upgrade colorama && \
|
||||||
|
wget -P /root https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/portable-zip/chat.py && \
|
||||||
export PYTHONUNBUFFERED=1
|
export PYTHONUNBUFFERED=1
|
||||||
|
|
||||||
ENTRYPOINT ["/bin/bash"]
|
ENTRYPOINT ["/bin/bash"]
|
||||||
|
|
@ -32,3 +32,37 @@ sudo docker run -itd \
|
||||||
After the container is booted, you could get into the container through `docker exec`.
|
After the container is booted, you could get into the container through `docker exec`.
|
||||||
|
|
||||||
To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4).
|
To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4).
|
||||||
|
|
||||||
|
### Use chat.py
|
||||||
|
|
||||||
|
chat.py can be used to initiate a conversation with a specified model. The file is under directory '/root'.
|
||||||
|
|
||||||
|
You can download models and bind the model directory from host machine to container when start a container.
|
||||||
|
|
||||||
|
Here is an example:
|
||||||
|
```bash
|
||||||
|
export DOCKER_IMAGE=intelanalytics/bigdl-llm-cpu:2.4.0-SNAPSHOT
|
||||||
|
export MODEL_PATH=/home/llm/models
|
||||||
|
|
||||||
|
sudo docker run -itd \
|
||||||
|
--net=host \
|
||||||
|
--cpuset-cpus="0-47" \
|
||||||
|
--cpuset-mems="0" \
|
||||||
|
--memory="32G" \
|
||||||
|
--name=CONTAINER_NAME \
|
||||||
|
--shm-size="16g" \
|
||||||
|
-v $MODEL_PATH:/llm/models/
|
||||||
|
$DOCKER_IMAGE
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
After entering the container through `docker exec`, you can run chat.py by:
|
||||||
|
```bash
|
||||||
|
cd /root
|
||||||
|
python chat.py --model-path YOUR_MODEL_PATH
|
||||||
|
```
|
||||||
|
In the example above, it can be:
|
||||||
|
```bash
|
||||||
|
cd /root
|
||||||
|
python chat.py --model-path /llm/models/MODEL_NAME
|
||||||
|
```
|
||||||
Loading…
Reference in a new issue