LLM: support quantized kv cache for Mistral in transformers >=4.36.0 (#10326)
* support quantize kv for mistral in transformers 4.36 * update mistral support. * fix style.
This commit is contained in:
		
							parent
							
								
									566e9bbb36
								
							
						
					
					
						commit
						30d009bca7
					
				
					 3 changed files with 266 additions and 12 deletions
				
			
		| 
						 | 
				
			
			@ -1092,10 +1092,15 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
                modeling_module_name = model.__class__.__module__
 | 
			
		||||
                module = importlib.import_module(modeling_module_name)
 | 
			
		||||
                from bigdl.llm.transformers.models.mistral import mistral_attention_forward_4_36
 | 
			
		||||
                from bigdl.llm.transformers.models.mistral import mistral_model_forward_4_36
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralAttention,
 | 
			
		||||
                                mistral_attention_forward_4_36
 | 
			
		||||
                                )
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralModel,
 | 
			
		||||
                                mistral_model_forward_4_36
 | 
			
		||||
                                )
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralRMSNorm,
 | 
			
		||||
                                llama_rms_norm_forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -53,6 +53,10 @@ from transformers.models.llama.modeling_llama import LlamaModel
 | 
			
		|||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
 | 
			
		||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
try:
 | 
			
		||||
    from transformers.cache_utils import Cache
 | 
			
		||||
except ImportError:
 | 
			
		||||
    Cache = Tuple[torch.Tensor]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
			
		||||
| 
						 | 
				
			
			@ -934,11 +938,11 @@ def llama_attention_forward_4_36(
 | 
			
		|||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
			
		||||
        forward_function = llama_attention_forward_4_36_quantized
 | 
			
		||||
    else:
 | 
			
		||||
| 
						 | 
				
			
			@ -960,11 +964,11 @@ def llama_attention_forward_4_36_quantized(
 | 
			
		|||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    if "padding_mask" in kwargs:
 | 
			
		||||
        warnings.warn(
 | 
			
		||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
			
		||||
| 
						 | 
				
			
			@ -999,8 +1003,10 @@ def llama_attention_forward_4_36_quantized(
 | 
			
		|||
                                                                         position_ids,
 | 
			
		||||
                                                                         tmp_cache_k, tmp_cache_v,
 | 
			
		||||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         0,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -1140,11 +1146,11 @@ def llama_attention_forward_4_36_original(
 | 
			
		|||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    if "padding_mask" in kwargs:
 | 
			
		||||
        warnings.warn(
 | 
			
		||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -36,11 +36,13 @@
 | 
			
		|||
# limitations under the License.
 | 
			
		||||
""" PyTorch Mistral model."""
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
from typing import List, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch import nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from transformers.models.mistral.modeling_mistral import MistralModel
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
| 
						 | 
				
			
			@ -51,7 +53,10 @@ from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
 | 
			
		|||
    is_enough_kv_cache_room_4_36
 | 
			
		||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
 | 
			
		||||
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    from transformers.cache_utils import Cache
 | 
			
		||||
except ImportError:
 | 
			
		||||
    Cache = Tuple[torch.Tensor]
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -121,6 +126,37 @@ def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_
 | 
			
		|||
    return attn_output, attn_weights
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mistral_model_forward_4_36(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    from bigdl.llm.transformers.kv import DynamicFp8Cache
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
 | 
			
		||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
    return MistralModel.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mistral_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			@ -480,11 +516,218 @@ def mistral_attention_forward_4_36(
 | 
			
		|||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor]=None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]]=None,
 | 
			
		||||
    past_key_value: Optional[Cache]=None,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    padding_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
			
		||||
        forward_function = mistral_attention_forward_4_36_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = mistral_attention_forward_4_36_original
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self=self,
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_value=past_key_value,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        kwargs=kwargs
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mistral_attention_forward_4_36_quantized(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor]=None,
 | 
			
		||||
    past_key_value: Optional[Cache]=None,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    bsz, q_len, hidden_size = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # for flash attention
 | 
			
		||||
    original_dtype = hidden_states.dtype
 | 
			
		||||
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
 | 
			
		||||
    decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
 | 
			
		||||
                                                use_fuse_rope,
 | 
			
		||||
                                                enough_kv_room,
 | 
			
		||||
                                                bsz * q_len)
 | 
			
		||||
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
			
		||||
            bsz,
 | 
			
		||||
            self.num_key_value_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            0,
 | 
			
		||||
            1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
			
		||||
                                                                         self.q_proj.weight,
 | 
			
		||||
                                                                         self.k_proj.weight,
 | 
			
		||||
                                                                         self.v_proj.weight,
 | 
			
		||||
                                                                         position_ids,
 | 
			
		||||
                                                                         tmp_cache_k, tmp_cache_v,
 | 
			
		||||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         0,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = key_states.view(bsz, q_len,
 | 
			
		||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = value_states.view(bsz, q_len,
 | 
			
		||||
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            if self.layer_idx is None:
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"The cache structure has changed since version v4.36. "
 | 
			
		||||
                    "If you are using {self.__class__.__name__} "
 | 
			
		||||
                    "for auto-regressive decoding with k/v caching, "
 | 
			
		||||
                    "please make sure to initialize the attention class "
 | 
			
		||||
                    "with a layer index."
 | 
			
		||||
                )
 | 
			
		||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                         key_states,
 | 
			
		||||
                                                                         position_ids,
 | 
			
		||||
                                                                         "mistral")
 | 
			
		||||
        else:
 | 
			
		||||
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                            cos, sin, position_ids, "mistral")
 | 
			
		||||
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad:
 | 
			
		||||
        fsdp_flag = use_flash_attention(query_states, key_states)
 | 
			
		||||
    else:
 | 
			
		||||
        fsdp_flag = False
 | 
			
		||||
    if fsdp_flag:
 | 
			
		||||
        attention_dtype = torch.float16  # use fp16 for flash attention
 | 
			
		||||
    else:
 | 
			
		||||
        attention_dtype = original_dtype
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                     dtype=attention_dtype)
 | 
			
		||||
    value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                         dtype=attention_dtype)
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
        attn_weights = torch.matmul(query_states.to(key_states.dtype),
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            cache_kwargs = None
 | 
			
		||||
            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                             self.layer_idx, cache_kwargs)
 | 
			
		||||
    else:
 | 
			
		||||
        cache_kwargs = None  # Specific to RoPE models
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, cache_kwargs)
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
			
		||||
        else:
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
			
		||||
 | 
			
		||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
 | 
			
		||||
                                                            value_states.transpose(-1, -2))
 | 
			
		||||
 | 
			
		||||
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
			
		||||
    if attn_output.size() != attn_output_size:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          f"`attn_output` should be of size {attn_output_size},"
 | 
			
		||||
                          f" but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mistral_attention_forward_4_36_original(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor]=None,
 | 
			
		||||
    past_key_value: Optional[Cache]=None,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    **kwargs
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
			
		||||
    bsz, q_len, hidden_size = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # for flash attention
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue