LLM: support quantized kv cache for Mistral in transformers >=4.36.0 (#10326)
* support quantize kv for mistral in transformers 4.36 * update mistral support. * fix style.
This commit is contained in:
parent
566e9bbb36
commit
30d009bca7
3 changed files with 266 additions and 12 deletions
|
|
@ -1092,10 +1092,15 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
from bigdl.llm.transformers.models.mistral import mistral_attention_forward_4_36
|
from bigdl.llm.transformers.models.mistral import mistral_attention_forward_4_36
|
||||||
|
from bigdl.llm.transformers.models.mistral import mistral_model_forward_4_36
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.MistralAttention,
|
module.MistralAttention,
|
||||||
mistral_attention_forward_4_36
|
mistral_attention_forward_4_36
|
||||||
)
|
)
|
||||||
|
convert_forward(model,
|
||||||
|
module.MistralModel,
|
||||||
|
mistral_model_forward_4_36
|
||||||
|
)
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.MistralRMSNorm,
|
module.MistralRMSNorm,
|
||||||
llama_rms_norm_forward)
|
llama_rms_norm_forward)
|
||||||
|
|
|
||||||
|
|
@ -53,6 +53,10 @@ from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
|
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
|
||||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
try:
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
except ImportError:
|
||||||
|
Cache = Tuple[torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
|
|
@ -934,11 +938,11 @@ def llama_attention_forward_4_36(
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
past_key_value: Optional[Cache] = None,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||||
forward_function = llama_attention_forward_4_36_quantized
|
forward_function = llama_attention_forward_4_36_quantized
|
||||||
else:
|
else:
|
||||||
|
|
@ -960,11 +964,11 @@ def llama_attention_forward_4_36_quantized(
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
past_key_value: Optional[Cache] = None,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
if "padding_mask" in kwargs:
|
if "padding_mask" in kwargs:
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||||
|
|
@ -999,8 +1003,10 @@ def llama_attention_forward_4_36_quantized(
|
||||||
position_ids,
|
position_ids,
|
||||||
tmp_cache_k, tmp_cache_v,
|
tmp_cache_k, tmp_cache_v,
|
||||||
self.q_proj.weight.qtype,
|
self.q_proj.weight.qtype,
|
||||||
|
self.v_proj.weight.qtype,
|
||||||
0,
|
0,
|
||||||
self.head_dim)
|
self.head_dim,
|
||||||
|
self.rotary_emb.base,)
|
||||||
else:
|
else:
|
||||||
query_states = self.q_proj(hidden_states)
|
query_states = self.q_proj(hidden_states)
|
||||||
key_states = self.k_proj(hidden_states)
|
key_states = self.k_proj(hidden_states)
|
||||||
|
|
@ -1140,11 +1146,11 @@ def llama_attention_forward_4_36_original(
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
past_key_value: Optional[Cache] = None,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
if "padding_mask" in kwargs:
|
if "padding_mask" in kwargs:
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||||
|
|
|
||||||
|
|
@ -36,11 +36,13 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
""" PyTorch Mistral model."""
|
""" PyTorch Mistral model."""
|
||||||
import math
|
import math
|
||||||
from typing import Optional, Tuple
|
from typing import List, Optional, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.models.mistral.modeling_mistral import MistralModel
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||||
|
|
@ -51,7 +53,10 @@ from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
||||||
is_enough_kv_cache_room_4_36
|
is_enough_kv_cache_room_4_36
|
||||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
|
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
|
||||||
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||||
|
try:
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
except ImportError:
|
||||||
|
Cache = Tuple[torch.Tensor]
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -121,6 +126,37 @@ def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_
|
||||||
return attn_output, attn_weights
|
return attn_output, attn_weights
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_model_forward_4_36(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
from bigdl.llm.transformers.kv import DynamicFp8Cache
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
|
||||||
|
if not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
|
return MistralModel.forward(
|
||||||
|
self=self,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def mistral_attention_forward(
|
def mistral_attention_forward(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
@ -480,11 +516,218 @@ def mistral_attention_forward_4_36(
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
attention_mask: Optional[torch.Tensor]=None,
|
attention_mask: Optional[torch.Tensor]=None,
|
||||||
position_ids: Optional[torch.LongTensor]=None,
|
position_ids: Optional[torch.LongTensor]=None,
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
past_key_value: Optional[Cache]=None,
|
||||||
output_attentions: bool=False,
|
output_attentions: bool=False,
|
||||||
use_cache: bool=False,
|
use_cache: bool=False,
|
||||||
padding_mask: Optional[torch.Tensor]=None,
|
**kwargs
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
|
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||||
|
forward_function = mistral_attention_forward_4_36_quantized
|
||||||
|
else:
|
||||||
|
forward_function = mistral_attention_forward_4_36_original
|
||||||
|
return forward_function(
|
||||||
|
self=self,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_value,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
kwargs=kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_attention_forward_4_36_quantized(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor]=None,
|
||||||
|
position_ids: Optional[torch.LongTensor]=None,
|
||||||
|
past_key_value: Optional[Cache]=None,
|
||||||
|
output_attentions: bool=False,
|
||||||
|
use_cache: bool=False,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
|
bsz, q_len, hidden_size = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
# for flash attention
|
||||||
|
original_dtype = hidden_states.dtype
|
||||||
|
|
||||||
|
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||||
|
decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
|
||||||
|
use_fuse_rope,
|
||||||
|
enough_kv_room,
|
||||||
|
bsz * q_len)
|
||||||
|
|
||||||
|
if decoding_fast_path:
|
||||||
|
hidden_states = hidden_states.view(1, -1)
|
||||||
|
tmp_cache_k, tmp_cache_v = init_kv_cache(
|
||||||
|
bsz,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.head_dim,
|
||||||
|
0,
|
||||||
|
1,
|
||||||
|
dtype=hidden_states.dtype,
|
||||||
|
device=device
|
||||||
|
)
|
||||||
|
import linear_q4_0
|
||||||
|
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||||
|
self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight,
|
||||||
|
position_ids,
|
||||||
|
tmp_cache_k, tmp_cache_v,
|
||||||
|
self.q_proj.weight.qtype,
|
||||||
|
self.v_proj.weight.qtype,
|
||||||
|
0,
|
||||||
|
self.head_dim)
|
||||||
|
else:
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = key_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
if self.layer_idx is None:
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"The cache structure has changed since version v4.36. "
|
||||||
|
"If you are using {self.__class__.__name__} "
|
||||||
|
"for auto-regressive decoding with k/v caching, "
|
||||||
|
"please make sure to initialize the attention class "
|
||||||
|
"with a layer index."
|
||||||
|
)
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
|
||||||
|
if use_fuse_rope:
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
position_ids,
|
||||||
|
"mistral")
|
||||||
|
else:
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "mistral")
|
||||||
|
|
||||||
|
if not self.training and not hidden_states.requires_grad:
|
||||||
|
fsdp_flag = use_flash_attention(query_states, key_states)
|
||||||
|
else:
|
||||||
|
fsdp_flag = False
|
||||||
|
if fsdp_flag:
|
||||||
|
attention_dtype = torch.float16 # use fp16 for flash attention
|
||||||
|
else:
|
||||||
|
attention_dtype = original_dtype
|
||||||
|
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
|
||||||
|
dtype=attention_dtype)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
|
||||||
|
dtype=attention_dtype)
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||||
|
attn_weights = torch.matmul(query_states.to(key_states.dtype),
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention weights should be of size "
|
||||||
|
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||||
|
f" {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||||
|
f" but is {attention_mask.size()}"
|
||||||
|
)
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
if use_cache:
|
||||||
|
cache_kwargs = None
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
else:
|
||||||
|
cache_kwargs = None # Specific to RoPE models
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||||
|
else:
|
||||||
|
import linear_q4_0
|
||||||
|
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||||
|
|
||||||
|
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention weights should be of size "
|
||||||
|
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||||
|
f" {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||||
|
f" but is {attention_mask.size()}"
|
||||||
|
)
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
|
||||||
|
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
else:
|
||||||
|
import linear_q4_0
|
||||||
|
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
|
||||||
|
value_states.transpose(-1, -2))
|
||||||
|
|
||||||
|
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||||
|
if attn_output.size() != attn_output_size:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"`attn_output` should be of size {attn_output_size},"
|
||||||
|
f" but is {attn_output.size()}")
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_attention_forward_4_36_original(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor]=None,
|
||||||
|
position_ids: Optional[torch.LongTensor]=None,
|
||||||
|
past_key_value: Optional[Cache]=None,
|
||||||
|
output_attentions: bool=False,
|
||||||
|
use_cache: bool=False,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||||
bsz, q_len, hidden_size = hidden_states.size()
|
bsz, q_len, hidden_size = hidden_states.size()
|
||||||
device = hidden_states.device
|
device = hidden_states.device
|
||||||
# for flash attention
|
# for flash attention
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue