Add DeepSeek-MoE-16B-Chat (#10155)

* dsmoe-hf add

* add dsmoe pytorch

* update README

* modify comment

* remove GPU example

* update model name

* format code
This commit is contained in:
Zhicun 2024-02-28 10:12:09 +08:00 committed by GitHub
parent f4a2e32106
commit 308e637d0d
7 changed files with 264 additions and 0 deletions

View file

@ -189,12 +189,14 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| RWKV5 | | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
| SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
| DeepSeek-MoE | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) | |
| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
---

View file

@ -81,6 +81,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| RWKV5 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
| SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
| DeepSeek-MoE | [link](example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) | |
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |

View file

@ -0,0 +1,73 @@
# DeepSeek-MoE
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on DeepSeek-MoE models. For illustration purposes, we utilize the [deepseek-ai/deepseek-moe-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat) as a reference DeepSeek-MoE model.
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
>
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a DeepSeek-MoE model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install einops # additional package required for DeepSeek-MoE to conduct generation
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the DeepSeek-MoE model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the DeepSeek-MoE model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/DeepSeek-MoE-16b-chat'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `What is AI?`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.4 Sample Output
#### [deepseek-ai/DeepSeek-MoE-16b-chat](https://huggingface.co/deepseek-ai/DeepSeek-MoE-16b-chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<begin▁of▁sentence>[INST] What is AI? [/INST]
-------------------- Output --------------------
<begin▁of▁sentence>[INST] What is AI? [/INST]
Artificial Intelligence (AI) is a field of computer science that aims to create intelligent machines that can perform tasks that typically require human intelligence, such as learning
```

View file

@ -0,0 +1,62 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from transformers import AutoTokenizer, GenerationConfig
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeepSeek-MoE model')
parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/deepseek-moe-16b-chat",
help='The huggingface repo id for the CodeShell model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_path)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
messages = [
{"role": "user", "content": args.prompt}
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
st = time.time()
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=args.n_predict)
end = time.time()
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(result)

View file

@ -0,0 +1,63 @@
# DeepSeek-MoE
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate DeepSeek-MoE models. For illustration purposes, we utilize the [deepseek-ai/DeepSeek-MoE-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat) as a reference DeepSeek-MoE model.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a deepseek-moe model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install einops
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the DeepSeek-MoE model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-moe-16b-chat'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.4 Sample Output
#### [deepseek-ai/deepseek-moe-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<begin▁of▁sentence>[INST] What is AI? [/INST]
-------------------- Output --------------------
<begin▁of▁sentence>[INST] What is AI? [/INST]
Artificial Intelligence (AI) is a field of computer science that aims to create intelligent machines that can perform tasks that typically require human intelligence, such as learning
```

View file

@ -0,0 +1,62 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from transformers import AutoTokenizer, GenerationConfig
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeepSeek-MoE model')
parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/deepseek-moe-16b-chat",
help='The huggingface repo id for the CodeShell model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
from transformers import AutoModelForCausalLM
from bigdl.llm import optimize_model
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype = torch.bfloat16, device_map = "auto", attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_path)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
messages = [
{"role": "user", "content": args.prompt}
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
st = time.time()
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=args.n_predict)
end = time.time()
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(result)

View file

@ -861,6 +861,7 @@ def _optimize_post(model, lightweight_bmm=False):
# transformers version >= 4.36.0
from bigdl.llm.transformers.models.falcon import \
falcon_attention_forward_4_36
convert_forward(model,
module.FalconAttention,
falcon_attention_forward_4_36