Add DeepSeek-MoE-16B-Chat (#10155)
* dsmoe-hf add * add dsmoe pytorch * update README * modify comment * remove GPU example * update model name * format code
This commit is contained in:
		
							parent
							
								
									f4a2e32106
								
							
						
					
					
						commit
						308e637d0d
					
				
					 7 changed files with 264 additions and 0 deletions
				
			
		| 
						 | 
					@ -189,12 +189,14 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| RWKV5 |  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
					| RWKV5 |  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
				
			||||||
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
 | 
					| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
 | 
				
			||||||
| SpeechT5 |  | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
					| SpeechT5 |  | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
				
			||||||
 | 
					| DeepSeek-MoE | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) |  |
 | 
				
			||||||
| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
					| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
				
			||||||
| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
 | 
					| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
 | 
				
			||||||
| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
 | 
					| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
 | 
				
			||||||
| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
 | 
					| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
 | 
				
			||||||
| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
 | 
					| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
					***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
				
			||||||
 | 
					
 | 
				
			||||||
---
 | 
					---
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -81,6 +81,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| RWKV5 |  | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
					| RWKV5 |  | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
				
			||||||
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
 | 
					| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
 | 
				
			||||||
| SpeechT5 |  | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
					| SpeechT5 |  | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
				
			||||||
 | 
					| DeepSeek-MoE | [link](example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) |  |
 | 
				
			||||||
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
					| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
				
			||||||
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
 | 
					| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
 | 
				
			||||||
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
 | 
					| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,73 @@
 | 
				
			||||||
 | 
					# DeepSeek-MoE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on DeepSeek-MoE models. For illustration purposes, we utilize the [deepseek-ai/deepseek-moe-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat) as a reference DeepSeek-MoE model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a DeepSeek-MoE model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					pip install einops  # additional package required for DeepSeek-MoE to conduct generation
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the DeepSeek-MoE model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --prompt 'What is AI?'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-LLM env variables
 | 
				
			||||||
 | 
					source bigdl-llm-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the DeepSeek-MoE model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/DeepSeek-MoE-16b-chat'`.
 | 
				
			||||||
 | 
					- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `What is AI?`.
 | 
				
			||||||
 | 
					- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [deepseek-ai/DeepSeek-MoE-16b-chat](https://huggingface.co/deepseek-ai/DeepSeek-MoE-16b-chat)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					<|begin▁of▁sentence|>[INST] What is AI? [/INST]
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					<|begin▁of▁sentence|>[INST] What is AI? [/INST]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Artificial Intelligence (AI) is a field of computer science that aims to create intelligent machines that can perform tasks that typically require human intelligence, such as learning
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,62 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer, GenerationConfig
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeepSeek-MoE model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/deepseek-moe-16b-chat",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the CodeShell model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True).eval()
 | 
				
			||||||
 | 
					    model.generation_config = GenerationConfig.from_pretrained(model_path)
 | 
				
			||||||
 | 
					    model.generation_config.pad_token_id = model.generation_config.eos_token_id
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        messages = [
 | 
				
			||||||
 | 
					            {"role": "user", "content": args.prompt}
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					        prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
 | 
				
			||||||
 | 
					        input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        outputs = model.generate(input_tensor.to(model.device), max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(result)
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,63 @@
 | 
				
			||||||
 | 
					# DeepSeek-MoE
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate DeepSeek-MoE models. For illustration purposes, we utilize the [deepseek-ai/DeepSeek-MoE-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat) as a reference DeepSeek-MoE model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a deepseek-moe model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					pip install einops 
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --prompt 'What is AI?'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-LLM env variables
 | 
				
			||||||
 | 
					source bigdl-llm-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the DeepSeek-MoE model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-moe-16b-chat'`.
 | 
				
			||||||
 | 
					- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
				
			||||||
 | 
					- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [deepseek-ai/deepseek-moe-16b-chat](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					<|begin▁of▁sentence|>[INST] What is AI? [/INST]
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					<|begin▁of▁sentence|>[INST] What is AI? [/INST]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Artificial Intelligence (AI) is a field of computer science that aims to create intelligent machines that can perform tasks that typically require human intelligence, such as learning
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,62 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer, GenerationConfig
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeepSeek-MoE model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/deepseek-moe-16b-chat",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the CodeShell model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    from transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					    from bigdl.llm import optimize_model
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype = torch.bfloat16, device_map = "auto", attn_implementation="eager")
 | 
				
			||||||
 | 
					    model.generation_config = GenerationConfig.from_pretrained(model_path)
 | 
				
			||||||
 | 
					    model.generation_config.pad_token_id = model.generation_config.eos_token_id
 | 
				
			||||||
 | 
					    model = optimize_model(model)
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        messages = [
 | 
				
			||||||
 | 
					            {"role": "user", "content": args.prompt}
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					        prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
 | 
				
			||||||
 | 
					        input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        outputs = model.generate(input_tensor.to(model.device), max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(result)
 | 
				
			||||||
| 
						 | 
					@ -861,6 +861,7 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                        # transformers version >= 4.36.0
 | 
					                        # transformers version >= 4.36.0
 | 
				
			||||||
                        from bigdl.llm.transformers.models.falcon import \
 | 
					                        from bigdl.llm.transformers.models.falcon import \
 | 
				
			||||||
                            falcon_attention_forward_4_36
 | 
					                            falcon_attention_forward_4_36
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        convert_forward(model,
 | 
					                        convert_forward(model,
 | 
				
			||||||
                                        module.FalconAttention,
 | 
					                                        module.FalconAttention,
 | 
				
			||||||
                                        falcon_attention_forward_4_36
 | 
					                                        falcon_attention_forward_4_36
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue