Add lm_head optimization on NPU (#11903)

This commit is contained in:
binbin Deng 2024-08-23 15:51:07 +08:00 committed by GitHub
parent 23631cd357
commit 303a090a6b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 167 additions and 0 deletions

View file

@ -30,3 +30,13 @@ def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
new_linear.in_features = new_weight.size(1)
new_linear.out_features = new_weight.size(0)
return new_linear
def reshape_lm_head_input(x):
if x.dim() > 3:
x = x.reshape([-1, x.shape[-2], x.shape[-1]])
shape = list(x.size())
if shape[1] > 10:
shape[1] = 1
x = x[:, -1, :].view(shape)
return x

View file

@ -54,6 +54,9 @@ def optimize_llm(
prefill_runner=prefill_runner, decode_runner=decode_runner
)
convert_forward(model, LlamaModel, llama_model_forward)
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from ipex_llm.transformers.npu_models.llama_mp import llama2_casullm_forward
convert_forward(model, LlamaForCausalLM, llama2_casullm_forward)
elif model.config.model_type == "qwen2" and model.config.intermediate_size == 8960:
# for qwen2-1.5B
from ipex_llm.transformers.npu_models.qwen2_mp import gen_qwen2_fused_model_forward
@ -77,3 +80,6 @@ def optimize_llm(
prefill_runner=prefill_runner, decode_runner=decode_runner
)
convert_forward(model, Qwen2Model, qwen2_model_forward)
from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM
from ipex_llm.transformers.npu_models.qwen2_mp import qwen2_casullm_forward
convert_forward(model, Qwen2ForCausalLM, qwen2_casullm_forward)

View file

@ -39,6 +39,9 @@ from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.transformers.npu_models.mp_models_base import run_model
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
from ipex_llm.transformers.npu_models.common import reshape_lm_head_input
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.nn import CrossEntropyLoss
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
@ -944,3 +947,79 @@ def gen_llama_fused_model_forward(prefill_runner, decode_runner):
)
return llama_fused_model_forward
def llama2_casullm_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# ipex-llm change start
hidden_states = reshape_lm_head_input(hidden_states)
# ipex-llm change end
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp,
dim=0)
logits = [F.linear(hidden_states, lm_head_slices[i])
for i in range(self.config.pretraining_tp)]
logits = torch.cat(logits, dim=-1)
else:
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View file

@ -39,6 +39,9 @@ from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.transformers.npu_models.mp_models_base import run_model
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
from ipex_llm.transformers.npu_models.common import reshape_lm_head_input
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.nn import CrossEntropyLoss
class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
@ -981,3 +984,72 @@ def gen_qwen2_fused_model_forward(prefill_runner, decode_runner):
)
return qwen2_fused_model_forward
def qwen2_casullm_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# cache_position=cache_position,
)
hidden_states = outputs[0]
# ipex-llm change start
hidden_states = reshape_lm_head_input(hidden_states)
# ipex-llm change end
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)