Add basic optimization for Qwen2.5 omni (#13022)
This commit is contained in:
		
							parent
							
								
									61c2e9c271
								
							
						
					
					
						commit
						300eb01d98
					
				
					 2 changed files with 320 additions and 0 deletions
				
			
		| 
						 | 
					@ -1074,6 +1074,9 @@ def _optimize_pre(model, qtype=None):
 | 
				
			||||||
    elif model.config.model_type == "deepseek_v3" and model.config.hidden_size == 2048:
 | 
					    elif model.config.model_type == "deepseek_v3" and model.config.hidden_size == 2048:
 | 
				
			||||||
        from ipex_llm.transformers.models.deepseek import padding_mla_v_hd
 | 
					        from ipex_llm.transformers.models.deepseek import padding_mla_v_hd
 | 
				
			||||||
        model.apply(padding_mla_v_hd)
 | 
					        model.apply(padding_mla_v_hd)
 | 
				
			||||||
 | 
					    elif model.config.model_type == "qwen2_5_omni":
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_5_omni import merge_qkv
 | 
				
			||||||
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
    return model
 | 
					    return model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -2043,7 +2046,38 @@ def _optimize_post(model):
 | 
				
			||||||
        convert_forward(model, module.DeepseekV3Model, deepseek_model_forward)
 | 
					        convert_forward(model, module.DeepseekV3Model, deepseek_model_forward)
 | 
				
			||||||
        convert_forward(model, module.DeepseekV3Attention, deepseek_attention_forward)
 | 
					        convert_forward(model, module.DeepseekV3Attention, deepseek_attention_forward)
 | 
				
			||||||
        convert_forward(model, module.DeepseekV3MoE, deepseek_moe_forward)
 | 
					        convert_forward(model, module.DeepseekV3MoE, deepseek_moe_forward)
 | 
				
			||||||
 | 
					    elif model.config.model_type == "qwen2_5_omni":
 | 
				
			||||||
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
 | 
					        module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # llm opt
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_attention_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_thinker_model_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2 import qwen2_mlp_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.model, module.Qwen2_5OmniAttention,
 | 
				
			||||||
 | 
					                        qwen2_5_omni_attention_forward)
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.model, module.Qwen2_5OmniSdpaAttention,
 | 
				
			||||||
 | 
					                        qwen2_5_omni_attention_forward)
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.model, module.Qwen2_5OmniThinkerModel,
 | 
				
			||||||
 | 
					                        qwen2_5_omni_thinker_model_forward)
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.model, module.Qwen2MLP, qwen2_mlp_forward)
 | 
				
			||||||
 | 
					        convert_forward(model, module.Qwen2RMSNorm, rms_norm_forward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # vision opt
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_vl import qwen2_vision_get_dtype
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_vision_attention_forward
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.visual, module.Qwen2_5OmniVisionAttention,
 | 
				
			||||||
 | 
					                        qwen2_5_omni_vision_attention_forward)
 | 
				
			||||||
 | 
					        convert_forward(model.thinker.visual, module.Qwen2_5OmniVisionSdpaAttention,
 | 
				
			||||||
 | 
					                        qwen2_5_omni_vision_attention_forward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # tts opt
 | 
				
			||||||
 | 
					        if hasattr(model, "talker"):
 | 
				
			||||||
 | 
					            convert_forward(model.talker, module.Qwen2_5OmniAttention,
 | 
				
			||||||
 | 
					                            qwen2_5_omni_attention_forward)
 | 
				
			||||||
 | 
					            convert_forward(model.talker, module.Qwen2_5OmniThinkerModel,
 | 
				
			||||||
 | 
					                            qwen2_5_omni_thinker_model_forward)
 | 
				
			||||||
    return model
 | 
					    return model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										286
									
								
								python/llm/src/ipex_llm/transformers/models/qwen2_5_omni.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										286
									
								
								python/llm/src/ipex_llm/transformers/models/qwen2_5_omni.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,286 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Some parts of this file is adapted from
 | 
				
			||||||
 | 
					# https://github.com/huggingface/transformers/blob/3a1ead0aabed473eafe527915eea8c197d424356/src/transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py
 | 
				
			||||||
 | 
					# which is licensed under Apache License 2.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from typing import Optional, Tuple, List, Union
 | 
				
			||||||
 | 
					from transformers.cache_utils import Cache
 | 
				
			||||||
 | 
					from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
				
			||||||
 | 
					from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import Qwen2_5OmniAttention
 | 
				
			||||||
 | 
					from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_rotary_pos_emb_vision
 | 
				
			||||||
 | 
					from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_multimodal_rotary_pos_emb
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ipex_llm.utils.common import invalidInputError
 | 
				
			||||||
 | 
					from ipex_llm.transformers.kv import DynamicNormalCache
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.common import merge_qkv_base
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.common import attention_softmax
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.utils import use_sdp_non_causal
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def merge_qkv(module: torch.nn.Module):
 | 
				
			||||||
 | 
					    merge_qkv_base(module, Qwen2_5OmniAttention)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_5_omni_attention_forward(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Cache] = None,
 | 
				
			||||||
 | 
					    output_attentions: bool = False,
 | 
				
			||||||
 | 
					    use_cache: bool = False,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    position_embeddings: Tuple[torch.Tensor, torch.Tensor]=None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    bsz, q_len, _ = hidden_states.size()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    qkv = self.qkv_proj(hidden_states)
 | 
				
			||||||
 | 
					    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
				
			||||||
 | 
					    qkv = qkv.transpose(1, 2)
 | 
				
			||||||
 | 
					    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
				
			||||||
 | 
					                                                        self.num_key_value_heads,
 | 
				
			||||||
 | 
					                                                        self.num_key_value_heads], dim=1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cos, sin = position_embeddings
 | 
				
			||||||
 | 
					    if query_states.device.type == "xpu":
 | 
				
			||||||
 | 
					        import xe_addons
 | 
				
			||||||
 | 
					        xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        query_states, key_states = apply_multimodal_rotary_pos_emb(
 | 
				
			||||||
 | 
					            query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    key_states, value_states = past_key_value.update(key_states, value_states,
 | 
				
			||||||
 | 
					                                                     self.layer_idx, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_weights = None
 | 
				
			||||||
 | 
					    attn_output = scaled_dot_product_attention(
 | 
				
			||||||
 | 
					        query_states, key_states, value_states,
 | 
				
			||||||
 | 
					        attention_mask, q_len == key_states.size(2)
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(bsz, q_len, -1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_5_omni_thinker_model_forward(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    input_ids: torch.LongTensor = None,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
				
			||||||
 | 
					    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
				
			||||||
 | 
					    use_cache: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_attentions: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_hidden_states: Optional[bool] = None,
 | 
				
			||||||
 | 
					    return_dict: Optional[bool] = None,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
				
			||||||
 | 
					    output_attentions = (
 | 
				
			||||||
 | 
					        output_attentions if output_attentions is not None
 | 
				
			||||||
 | 
					        else self.config.output_attentions
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    output_hidden_states = (
 | 
				
			||||||
 | 
					        output_hidden_states if output_hidden_states is not None
 | 
				
			||||||
 | 
					        else self.config.output_hidden_states
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    invalidInputError((input_ids is None) ^ (inputs_embeds is None),
 | 
				
			||||||
 | 
					                      "You must specify exactly one of input_ids or inputs_embeds")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if inputs_embeds is None:
 | 
				
			||||||
 | 
					        inputs_embeds = self.embed_tokens(input_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # ipex-llm changes start: kv cache
 | 
				
			||||||
 | 
					    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
				
			||||||
 | 
					    use_cache = True if inputs_embeds.device.type == "xpu" else use_cache
 | 
				
			||||||
 | 
					    # torch.jit.trace() doesn't support cache objects in the output
 | 
				
			||||||
 | 
					    if use_cache and not torch.jit.is_tracing():
 | 
				
			||||||
 | 
					        if not isinstance(past_key_values, DynamicNormalCache):
 | 
				
			||||||
 | 
					            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
				
			||||||
 | 
					    # ipex-llm changes end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if cache_position is None:
 | 
				
			||||||
 | 
					        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | 
				
			||||||
 | 
					        cache_position = torch.arange(
 | 
				
			||||||
 | 
					            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # the hard coded `3` is for temporal, height and width.
 | 
				
			||||||
 | 
					    if position_ids is None:
 | 
				
			||||||
 | 
					        position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
 | 
				
			||||||
 | 
					    elif position_ids.dim() == 2:
 | 
				
			||||||
 | 
					        position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    causal_mask = self._update_causal_mask(
 | 
				
			||||||
 | 
					        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = inputs_embeds
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # create position embeddings to be shared across the decoder layers
 | 
				
			||||||
 | 
					    position_embeddings = self.rotary_emb(hidden_states, position_ids)
 | 
				
			||||||
 | 
					    # ipex-llm changes start: rotary embedding
 | 
				
			||||||
 | 
					    if inputs_embeds.device.type == "xpu":
 | 
				
			||||||
 | 
					        cos, sin = position_embeddings
 | 
				
			||||||
 | 
					        mrope_section = self.config.rope_scaling["mrope_section"] * 2
 | 
				
			||||||
 | 
					        cos = torch.cat([m[i % 3] for i, m in
 | 
				
			||||||
 | 
					                        enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
 | 
				
			||||||
 | 
					        sin = torch.cat([m[i % 3] for i, m in
 | 
				
			||||||
 | 
					                        enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
 | 
				
			||||||
 | 
					        position_embeddings = cos.contiguous(), sin.contiguous()
 | 
				
			||||||
 | 
					    # ipex-llm changes end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # decoder layers
 | 
				
			||||||
 | 
					    all_hidden_states = () if output_hidden_states else None
 | 
				
			||||||
 | 
					    all_self_attns = () if output_attentions else None
 | 
				
			||||||
 | 
					    next_decoder_cache = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for decoder_layer in self.layers:
 | 
				
			||||||
 | 
					        if output_hidden_states:
 | 
				
			||||||
 | 
					            all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        layer_outputs = decoder_layer(
 | 
				
			||||||
 | 
					            hidden_states,
 | 
				
			||||||
 | 
					            attention_mask=causal_mask,
 | 
				
			||||||
 | 
					            position_ids=position_ids,
 | 
				
			||||||
 | 
					            past_key_value=past_key_values,
 | 
				
			||||||
 | 
					            output_attentions=output_attentions,
 | 
				
			||||||
 | 
					            use_cache=use_cache,
 | 
				
			||||||
 | 
					            cache_position=cache_position,
 | 
				
			||||||
 | 
					            position_embeddings=position_embeddings,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        hidden_states = layer_outputs[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_cache:
 | 
				
			||||||
 | 
					            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if output_attentions:
 | 
				
			||||||
 | 
					            all_self_attns += (layer_outputs[1],)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = self.norm(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # add hidden states from the last decoder layer
 | 
				
			||||||
 | 
					    if output_hidden_states:
 | 
				
			||||||
 | 
					        all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    next_cache = next_decoder_cache if use_cache else None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not return_dict:
 | 
				
			||||||
 | 
					        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
 | 
				
			||||||
 | 
					                     if v is not None)
 | 
				
			||||||
 | 
					    return BaseModelOutputWithPast(
 | 
				
			||||||
 | 
					        last_hidden_state=hidden_states,
 | 
				
			||||||
 | 
					        past_key_values=next_cache,
 | 
				
			||||||
 | 
					        hidden_states=all_hidden_states,
 | 
				
			||||||
 | 
					        attentions=all_self_attns,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_5_omni_vision_attention_forward(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    cu_seqlens: torch.Tensor,
 | 
				
			||||||
 | 
					    rotary_pos_emb: torch.Tensor = None
 | 
				
			||||||
 | 
					) -> torch.Tensor:
 | 
				
			||||||
 | 
					    seq_length = hidden_states.shape[0]
 | 
				
			||||||
 | 
					    q = self.q(hidden_states).reshape(seq_length, self.num_heads, -1)
 | 
				
			||||||
 | 
					    k = self.k(hidden_states).reshape(seq_length, self.num_heads, -1)
 | 
				
			||||||
 | 
					    v = self.v(hidden_states).reshape(seq_length, self.num_heads, -1)
 | 
				
			||||||
 | 
					    q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
 | 
				
			||||||
 | 
					    k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
 | 
				
			||||||
 | 
					    # q, k, v: [seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    seq_lens = cu_seqlens.tolist()
 | 
				
			||||||
 | 
					    invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
 | 
				
			||||||
 | 
					                      "unexpected input")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    head_dim = q.size(-1)
 | 
				
			||||||
 | 
					    if use_sdp_non_causal(head_dim, q.device, q.dtype):
 | 
				
			||||||
 | 
					        image_num = len(seq_lens) - 1
 | 
				
			||||||
 | 
					        image_size = seq_lens[1] - seq_lens[0]
 | 
				
			||||||
 | 
					        guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
 | 
				
			||||||
 | 
					                                        dtype=cu_seqlens.dtype, device=cu_seqlens.device)
 | 
				
			||||||
 | 
					        if (guessed_seq_lens == cu_seqlens).all():
 | 
				
			||||||
 | 
					            q = q.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					            k = k.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					            v = v.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					            # q, k, v: [image_num, num_heads, image_size, head_dim]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attn_output = scaled_dot_product_attention(
 | 
				
			||||||
 | 
					                q, k.contiguous(), v.contiguous(),
 | 
				
			||||||
 | 
					                None, False
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
 | 
				
			||||||
 | 
					            attn_output = attn_output.view(seq_length, self.num_heads, head_dim)
 | 
				
			||||||
 | 
					            # attn_output: [seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            q = q.transpose(0, 1).unsqueeze(0)
 | 
				
			||||||
 | 
					            k = k.transpose(0, 1).unsqueeze(0).contiguous()
 | 
				
			||||||
 | 
					            v = v.transpose(0, 1).unsqueeze(0).contiguous()
 | 
				
			||||||
 | 
					            # q, k, v: [1, num_heads, seq_length, head_dim]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attn_outputs = []
 | 
				
			||||||
 | 
					            for i in range(image_num):
 | 
				
			||||||
 | 
					                start_idx = seq_lens[i]
 | 
				
			||||||
 | 
					                end_idx = seq_lens[i + 1]
 | 
				
			||||||
 | 
					                tmp_q = q[:, :, start_idx:end_idx, :]
 | 
				
			||||||
 | 
					                tmp_k = k[:, :, start_idx:end_idx, :]
 | 
				
			||||||
 | 
					                tmp_v = v[:, :, start_idx:end_idx, :]
 | 
				
			||||||
 | 
					                attn_output = scaled_dot_product_attention(
 | 
				
			||||||
 | 
					                    tmp_q, tmp_k, tmp_v,
 | 
				
			||||||
 | 
					                    None, False
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					                attn_output = attn_output.permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					                # attn_output: [1, seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					                attn_outputs.append(attn_output)
 | 
				
			||||||
 | 
					            attn_output = torch.cat(attn_outputs, dim=1).squeeze(0)
 | 
				
			||||||
 | 
					            # attn_output: [seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attention_mask = torch.full(
 | 
				
			||||||
 | 
					            [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        for i in range(1, len(seq_lens)):
 | 
				
			||||||
 | 
					            attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        q = q.transpose(0, 1)
 | 
				
			||||||
 | 
					        k = k.transpose(0, 1)
 | 
				
			||||||
 | 
					        v = v.transpose(0, 1)
 | 
				
			||||||
 | 
					        # q, k, v: [num_heads, seq_length, head_dim]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(head_dim)
 | 
				
			||||||
 | 
					        attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					        attn_weights = attention_softmax(attn_weights)
 | 
				
			||||||
 | 
					        attn_output = torch.matmul(attn_weights, v)
 | 
				
			||||||
 | 
					        attn_output = attn_output.transpose(0, 1)
 | 
				
			||||||
 | 
					        # attn_output: [seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(seq_length, -1)
 | 
				
			||||||
 | 
					    attn_output = self.proj(attn_output)
 | 
				
			||||||
 | 
					    return attn_output
 | 
				
			||||||
		Loading…
	
		Reference in a new issue