Add basic optimization for Qwen2.5 omni (#13022)

This commit is contained in:
Yishuo Wang 2025-03-28 17:21:52 +08:00 committed by GitHub
parent 61c2e9c271
commit 300eb01d98
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 320 additions and 0 deletions

View file

@ -1074,6 +1074,9 @@ def _optimize_pre(model, qtype=None):
elif model.config.model_type == "deepseek_v3" and model.config.hidden_size == 2048: elif model.config.model_type == "deepseek_v3" and model.config.hidden_size == 2048:
from ipex_llm.transformers.models.deepseek import padding_mla_v_hd from ipex_llm.transformers.models.deepseek import padding_mla_v_hd
model.apply(padding_mla_v_hd) model.apply(padding_mla_v_hd)
elif model.config.model_type == "qwen2_5_omni":
from ipex_llm.transformers.models.qwen2_5_omni import merge_qkv
model.apply(merge_qkv)
return model return model
@ -2043,7 +2046,38 @@ def _optimize_post(model):
convert_forward(model, module.DeepseekV3Model, deepseek_model_forward) convert_forward(model, module.DeepseekV3Model, deepseek_model_forward)
convert_forward(model, module.DeepseekV3Attention, deepseek_attention_forward) convert_forward(model, module.DeepseekV3Attention, deepseek_attention_forward)
convert_forward(model, module.DeepseekV3MoE, deepseek_moe_forward) convert_forward(model, module.DeepseekV3MoE, deepseek_moe_forward)
elif model.config.model_type == "qwen2_5_omni":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
# llm opt
from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_attention_forward
from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_thinker_model_forward
from ipex_llm.transformers.models.qwen2 import qwen2_mlp_forward
from ipex_llm.transformers.models.common import rms_norm_forward
convert_forward(model.thinker.model, module.Qwen2_5OmniAttention,
qwen2_5_omni_attention_forward)
convert_forward(model.thinker.model, module.Qwen2_5OmniSdpaAttention,
qwen2_5_omni_attention_forward)
convert_forward(model.thinker.model, module.Qwen2_5OmniThinkerModel,
qwen2_5_omni_thinker_model_forward)
convert_forward(model.thinker.model, module.Qwen2MLP, qwen2_mlp_forward)
convert_forward(model, module.Qwen2RMSNorm, rms_norm_forward)
# vision opt
from ipex_llm.transformers.models.qwen2_vl import qwen2_vision_get_dtype
from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_vision_attention_forward
convert_forward(model.thinker.visual, module.Qwen2_5OmniVisionAttention,
qwen2_5_omni_vision_attention_forward)
convert_forward(model.thinker.visual, module.Qwen2_5OmniVisionSdpaAttention,
qwen2_5_omni_vision_attention_forward)
# tts opt
if hasattr(model, "talker"):
convert_forward(model.talker, module.Qwen2_5OmniAttention,
qwen2_5_omni_attention_forward)
convert_forward(model.talker, module.Qwen2_5OmniThinkerModel,
qwen2_5_omni_thinker_model_forward)
return model return model

View file

@ -0,0 +1,286 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/3a1ead0aabed473eafe527915eea8c197d424356/src/transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py
# which is licensed under Apache License 2.0
import math
import torch
from typing import Optional, Tuple, List, Union
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import Qwen2_5OmniAttention
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_rotary_pos_emb_vision
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_multimodal_rotary_pos_emb
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.kv import DynamicNormalCache
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import use_sdp_non_causal
def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, Qwen2_5OmniAttention)
def qwen2_5_omni_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor]=None,
position_embeddings: Tuple[torch.Tensor, torch.Tensor]=None,
):
bsz, q_len, _ = hidden_states.size()
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
cos, sin = position_embeddings
if query_states.device.type == "xpu":
import xe_addons
xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
else:
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)
attn_weights = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2)
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def qwen2_5_omni_thinker_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
invalidInputError((input_ids is None) ^ (inputs_embeds is None),
"You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# ipex-llm changes start: kv cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = True if inputs_embeds.device.type == "xpu" else use_cache
# torch.jit.trace() doesn't support cache objects in the output
if use_cache and not torch.jit.is_tracing():
if not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
# ipex-llm changes end
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
# the hard coded `3` is for temporal, height and width.
if position_ids is None:
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
elif position_ids.dim() == 2:
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# ipex-llm changes start: rotary embedding
if inputs_embeds.device.type == "xpu":
cos, sin = position_embeddings
mrope_section = self.config.rope_scaling["mrope_section"] * 2
cos = torch.cat([m[i % 3] for i, m in
enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
sin = torch.cat([m[i % 3] for i, m in
enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
position_embeddings = cos.contiguous(), sin.contiguous()
# ipex-llm changes end
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def qwen2_5_omni_vision_attention_forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor = None
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q = self.q(hidden_states).reshape(seq_length, self.num_heads, -1)
k = self.k(hidden_states).reshape(seq_length, self.num_heads, -1)
v = self.v(hidden_states).reshape(seq_length, self.num_heads, -1)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
# q, k, v: [seq_length, num_heads, head_dim]
seq_lens = cu_seqlens.tolist()
invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
"unexpected input")
head_dim = q.size(-1)
if use_sdp_non_causal(head_dim, q.device, q.dtype):
image_num = len(seq_lens) - 1
image_size = seq_lens[1] - seq_lens[0]
guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
dtype=cu_seqlens.dtype, device=cu_seqlens.device)
if (guessed_seq_lens == cu_seqlens).all():
q = q.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
k = k.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
v = v.view(image_num, image_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
# q, k, v: [image_num, num_heads, image_size, head_dim]
attn_output = scaled_dot_product_attention(
q, k.contiguous(), v.contiguous(),
None, False
)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(seq_length, self.num_heads, head_dim)
# attn_output: [seq_length, num_heads, head_dim]
else:
q = q.transpose(0, 1).unsqueeze(0)
k = k.transpose(0, 1).unsqueeze(0).contiguous()
v = v.transpose(0, 1).unsqueeze(0).contiguous()
# q, k, v: [1, num_heads, seq_length, head_dim]
attn_outputs = []
for i in range(image_num):
start_idx = seq_lens[i]
end_idx = seq_lens[i + 1]
tmp_q = q[:, :, start_idx:end_idx, :]
tmp_k = k[:, :, start_idx:end_idx, :]
tmp_v = v[:, :, start_idx:end_idx, :]
attn_output = scaled_dot_product_attention(
tmp_q, tmp_k, tmp_v,
None, False
)
attn_output = attn_output.permute(0, 2, 1, 3)
# attn_output: [1, seq_length, num_heads, head_dim]
attn_outputs.append(attn_output)
attn_output = torch.cat(attn_outputs, dim=1).squeeze(0)
# attn_output: [seq_length, num_heads, head_dim]
else:
attention_mask = torch.full(
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
)
for i in range(1, len(seq_lens)):
attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
# q, k, v: [num_heads, seq_length, head_dim]
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(head_dim)
attn_weights = attn_weights + attention_mask
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(0, 1)
# attn_output: [seq_length, num_heads, head_dim]
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output