LLM: add mixtral GPU examples (#9661)
This commit is contained in:
		
							parent
							
								
									968d99e6f5
								
							
						
					
					
						commit
						2fe38b4b9b
					
				
					 7 changed files with 2996 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -143,6 +143,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| ChatGLM2   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2)  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2)   |
 | 
			
		||||
| ChatGLM3   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3)  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3)   |
 | 
			
		||||
| Mistral    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral)    |
 | 
			
		||||
| Mixtral    |    | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral)    |
 | 
			
		||||
| Falcon     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon)    | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon)     |
 | 
			
		||||
| MPT        | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt)       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt)        |
 | 
			
		||||
| Dolly-v1   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v1)  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v1)   | 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							| 
						 | 
				
			
			@ -0,0 +1,76 @@
 | 
			
		|||
# Mixtral
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Mixtral models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) as a reference Mixtral model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
**Important: Please make sure you have installed `transformers==4.36.0` to run the example.**
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Mixtral model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
 | 
			
		||||
# Please make sure you are using a stable version of Transformers, 4.36.0 or newer.
 | 
			
		||||
pip install transformers==4.36.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Download Model and Replace File
 | 
			
		||||
To run [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) model on Intel GPU, we have provided an updated version [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py) of `modeling_moe_mistral.py`.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Download Model
 | 
			
		||||
You could use the following code to download [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert).
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
from huggingface_hub import snapshot_download
 | 
			
		||||
 | 
			
		||||
# for DiscoResearch/mixtral-7b-8expert
 | 
			
		||||
model_path = snapshot_download(repo_id='DiscoResearch/mixtral-7b-8expert')
 | 
			
		||||
print(f'DiscoResearch/mixtral-7b-8expert checkpoint is downloaded to {model_path}')
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Replace `modeling_moe_mistral.py`
 | 
			
		||||
For `DiscoResearch/mixtral-7b-8expert`, you should replace the `modeling_moe_mistral.py` with [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py).
 | 
			
		||||
 | 
			
		||||
### 3. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 4. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `DiscoResearch/mixtral-7b-8expert`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'DiscoResearch/mixtral-7b-8expert'`. For model `DiscoResearch/mixtral-7b-8expert`, you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
[INST] What is AI? [/INST]
 | 
			
		||||
 | 
			
		||||
[INST] Artificial Intelligence (AI) is the ability of a computer program or a machine to think and learn. It is also a field of
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,77 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
 | 
			
		||||
MIXTRAL_PROMPT_FORMAT = """<s>[INST] {prompt} [/INST]"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mixtral model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="'DiscoResearch/mixtral-7b-8expert'",
 | 
			
		||||
                        help='The huggingface repo id for the Mixtral (e.g. `DiscoResearch/mixtral-7b-8expert`) to be downloaded,'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder. For model `DiscoResearch/mixtral-7b-8expert`, '
 | 
			
		||||
                             'you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = MIXTRAL_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
			
		||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
			
		||||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
			
		||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output = output.cpu()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							| 
						 | 
				
			
			@ -0,0 +1,77 @@
 | 
			
		|||
# Mixtral
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Mixtral models. For illustration purposes, we utilize the DiscoResearch/mixtral-7b-8expert(https://huggingface.co/DiscoResearch/mixtral-7b-8expert) as a reference Mixtral model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
**Important: Please make sure you have installed `transformers==4.36.0` to run the example.**
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Mixtral model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
 | 
			
		||||
# Please make sure you are using a stable version of Transformers, 4.36.0 or newer.
 | 
			
		||||
pip install transformers==4.36.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Download Model and Replace File
 | 
			
		||||
To run [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) model on Intel GPU, we have provided an updated version [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py) of `modeling_moe_mistral.py`.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#### 2.1 Download Model
 | 
			
		||||
You could use the following code to download [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert).
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
from huggingface_hub import snapshot_download
 | 
			
		||||
 | 
			
		||||
# for DiscoResearch/mixtral-7b-8expert
 | 
			
		||||
model_path = snapshot_download(repo_id='DiscoResearch/mixtral-7b-8expert')
 | 
			
		||||
print(f'DiscoResearch/mixtral-7b-8expert checkpoint is downloaded to {model_path}')
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Replace `modeling_moe_mistral.py`
 | 
			
		||||
For `DiscoResearch/mixtral-7b-8expert`, you should replace the `modeling_moe_mistral.py` with [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py).
 | 
			
		||||
 | 
			
		||||
### 3. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 4. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `DiscoResearch/mixtral-7b-8expert`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'DiscoResearch/mixtral-7b-8expert'`. For model `DiscoResearch/mixtral-7b-8expert`, you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
[INST] What is AI? [/INST]
 | 
			
		||||
 | 
			
		||||
[INST] Artificial Intelligence (AI) is the ability of a computer program or a machine to think and learn. It is also a field of
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,75 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
 | 
			
		||||
MIXTRAL_PROMPT_FORMAT = """<s>[INST] {prompt} [/INST]"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mixtral model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="'DiscoResearch/mixtral-7b-8expert'",
 | 
			
		||||
                        help='The huggingface repo id for the Mixtral (e.g. `DiscoResearch/mixtral-7b-8expert`) to be downloaded,'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder. For model `DiscoResearch/mixtral-7b-8expert`, '
 | 
			
		||||
                             'you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 torch_dtype='auto',
 | 
			
		||||
                                                 low_cpu_mem_usage=True)
 | 
			
		||||
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = MIXTRAL_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output = output.cpu()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue