transformers==4.37, yi & yuan2 & vicuna (#11805)
* transformers==4.37 * added yi model * added yi model * xxxx * delete prompt template * / and delete
This commit is contained in:
parent
f43da2d455
commit
2fbbb51e71
4 changed files with 27 additions and 25 deletions
|
|
@ -1,5 +1,5 @@
|
|||
# Vicuna
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Vicuna models. For illustration purposes, we utilize the [lmsys/vicuna-13b-v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3) and [eachadea/vicuna-7b-1.1](https://huggingface.co/eachadea/vicuna-7b-1.1) as reference Vicuna models.
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Vicuna models. For illustration purposes, we utilize the [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) and [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) as reference Vicuna models.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
|
@ -109,7 +109,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
|
|||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Vicuna model (e.g. `lmsys/vicuna-13b-v1.3` and `eachadea/vicuna-7b-1.1`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'lmsys/vicuna-13b-v1.3'`.
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Vicuna model (e.g. `lmsys/vicuna-13b-v1.5` and `eachadea/vicuna-7b-v1.5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'lmsys/vicuna-13b-v1.5'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
|
|
@ -118,7 +118,7 @@ Arguments info:
|
|||
> Please select the appropriate size of the Vicuna model based on the capabilities of your machine.
|
||||
|
||||
#### Sample Output
|
||||
#### [lmsys/vicuna-13b-v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3)
|
||||
#### [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
|
|
@ -130,10 +130,10 @@ What is AI?
|
|||
### Human:
|
||||
What is AI?
|
||||
### Assistant:
|
||||
AI, or Artificial Intelligence, refers to the development of computer systems that can perform tasks that typically require human intelligence, such as visual perception,
|
||||
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that typically require human intelligence, such as visual perception
|
||||
```
|
||||
|
||||
#### [eachadea/vicuna-7b-1.1](https://huggingface.co/eachadea/vicuna-7b-1.1)
|
||||
#### [eachadea/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
|
|
@ -145,5 +145,5 @@ What is AI?
|
|||
### Human:
|
||||
What is AI?
|
||||
### Assistant:
|
||||
AI, or artificial intelligence, refers to the ability of a machine or computer program to mimic human intelligence and perform tasks that would normally require human intelligence to
|
||||
AI stands for "Artificial Intelligence." It refers to the development of computer systems that can perform tasks that typically require human intelligence, such as visual per
|
||||
```
|
||||
|
|
|
|||
|
|
@ -27,8 +27,8 @@ Vicuna_PROMPT_FORMAT = "### Human:\n{prompt} \n ### Assistant:\n"
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Vicuna model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="lmsys/vicuna-13b-v1.3",
|
||||
help='The huggingface repo id for the Vicuna (e.g. `lmsys/vicuna-13b-v1.3` and `eachadea/vicuna-7b-1.1`) to be downloaded'
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="lmsys/vicuna-13b-v1.5",
|
||||
help='The huggingface repo id for the Vicuna (e.g. `lmsys/vicuna-13b-v1.5` and `lmsys/vicuna-7b-v1.5`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
|
|
@ -57,7 +57,7 @@ if __name__ == '__main__':
|
|||
# enabling `use_cache=True` allows the model to utilize the previous
|
||||
# key/values attentions to speed up decoding;
|
||||
# to obtain optimal performance with IPEX-LLM INT4 optimizations,
|
||||
# it is important to set use_cache=True for vicuna-v1.3 models
|
||||
# it is important to set use_cache=True for vicuna-v1.5 models
|
||||
output = model.generate(input_ids,
|
||||
use_cache=True,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
# Yi
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Yi models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) as a reference Yi model.
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Yi models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) and [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-1.5-6B-Chat) as reference Yi models.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
|
@ -112,7 +112,7 @@ python ./generate.py
|
|||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Yi model (e.g. `01-ai/Yi-6B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'01-ai/Yi-6B'`.
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Yi model (e.g. `01-ai/Yi-6B` and `01-ai/Yi-6B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'01-ai/Yi-6B-Chat'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
|
|
@ -122,8 +122,18 @@ In the example, several arguments can be passed to satisfy your requirements:
|
|||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
AI是什么?
|
||||
What is AI?
|
||||
-------------------- Output --------------------
|
||||
AI是什么?
|
||||
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及
|
||||
What is AI?
|
||||
Artificial Intelligence (AI) is the simulation of human intelligence in machines. AI is the science and engineering of making intelligent machines, especially intelligent computer programs.
|
||||
```
|
||||
|
||||
#### [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
What is AI?
|
||||
-------------------- Output --------------------
|
||||
What is AI?
|
||||
Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self-
|
||||
```
|
||||
|
|
@ -21,21 +21,13 @@ import argparse
|
|||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# Refer to https://huggingface.co/01-ai/Yi-6B-Chat#31-use-the-chat-model
|
||||
YI_PROMPT_FORMAT = """
|
||||
<|im_start|>system
|
||||
You are a helpful assistant. If you don't understand what the user means, ask the user to provide more information.<|im_end|>
|
||||
<|im_start|>user
|
||||
{prompt}<|im_end|>
|
||||
<|im_start|>assistant
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Yi model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="01-ai/Yi-6B",
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="01-ai/Yi-6B-Chat",
|
||||
help='The huggingface repo id for the Yi model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
|
@ -60,7 +52,7 @@ if __name__ == '__main__':
|
|||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = YI_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
prompt = args.prompt
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex_llm model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
|
|
|
|||
Loading…
Reference in a new issue