optimize Chatglm4 (#11239)
* chatglm4 * update * update * add rms norm * chatglm4
This commit is contained in:
parent
eeffeeb2e2
commit
2f809116e2
2 changed files with 339 additions and 0 deletions
|
|
@ -1033,6 +1033,24 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.SelfAttention,
|
||||
chatglm_attention_forward
|
||||
)
|
||||
elif (model.config.num_layers == 40 and hasattr(model.config, 'rope_ratio')
|
||||
and model.config.rope_ratio == 500):
|
||||
# glm-4-9b-chat
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_attention_forward
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_model_forward
|
||||
from ipex_llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
||||
convert_forward(model,
|
||||
module.SelfAttention,
|
||||
chatglm4_attention_forward)
|
||||
convert_forward(model,
|
||||
module.ChatGLMModel,
|
||||
chatglm4_model_forward)
|
||||
convert_forward(model,
|
||||
module.RMSNorm,
|
||||
chatglm_rms_norm_forward)
|
||||
|
||||
elif "mpt" in model.config.model_type:
|
||||
if model.config.architectures is not None:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
|
|
|
|||
321
python/llm/src/ipex_llm/transformers/models/chatglm4.py
Normal file
321
python/llm/src/ipex_llm/transformers/models/chatglm4.py
Normal file
|
|
@ -0,0 +1,321 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://huggingface.co/THUDM/chatglm2-6b-32k/blob/main/configuration_chatglm.py
|
||||
#
|
||||
|
||||
import torch
|
||||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
||||
import torch.nn.functional as F
|
||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, apply_ipex_rotate_every_two
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
||||
|
||||
import os
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||
KV_CACHE_ALLOC_MIN_LENGTH = 512
|
||||
|
||||
|
||||
def split_tensor_along_last_dim(
|
||||
tensor: torch.Tensor,
|
||||
num_partitions: int,
|
||||
contiguous_split_chunks: bool = False,
|
||||
) -> List[torch.Tensor]:
|
||||
"""Split a tensor along its last dimension.
|
||||
Arguments:
|
||||
tensor: input tensor.
|
||||
num_partitions: number of partitions to split the tensor
|
||||
contiguous_split_chunks: If True, make each chunk contiguous
|
||||
in memory.
|
||||
Returns:
|
||||
A list of Tensors
|
||||
"""
|
||||
# Get the size and dimension.
|
||||
last_dim = tensor.dim() - 1
|
||||
last_dim_size = tensor.size()[last_dim] // num_partitions
|
||||
# Split.
|
||||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||||
# Note: torch.split does not create contiguous tensors by default.
|
||||
if contiguous_split_chunks:
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
|
||||
def chatglm4_model_forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
full_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
from ipex_llm.transformers.kv import DynamicFp8Cache
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
# if use_cache and use_quantize_kv_cache(
|
||||
# self.encoder.layers[0].self_attention.query_key_value, input_ids):
|
||||
# if not isinstance(past_key_values, DynamicFp8Cache):
|
||||
# past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||
return chatglm4_model_forward_internal(
|
||||
self=self,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
full_attention_mask=full_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
|
||||
def chatglm4_model_forward_internal(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
full_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else
|
||||
self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or\
|
||||
(past_key_values and seq_length != 1):
|
||||
full_attention_mask = self.get_masks(input_ids,
|
||||
past_key_values,
|
||||
padding_mask=attention_mask)
|
||||
|
||||
use_fuse_rope = input_ids.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not self.training
|
||||
|
||||
# Rotary positional embeddings
|
||||
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
||||
if position_ids is not None:
|
||||
rotary_pos_emb = rotary_pos_emb[position_ids]
|
||||
else:
|
||||
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
||||
if use_fuse_rope:
|
||||
# Repeat cos sin here, call only once for each token.
|
||||
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
|
||||
# If put this to attension forward, it will generate too many times.
|
||||
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
|
||||
cos = cos.squeeze(-1)
|
||||
sin = sin.squeeze(-1)
|
||||
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
||||
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
||||
rotary_pos_emb = (cos, sin)
|
||||
|
||||
# Run encoder.
|
||||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||||
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
||||
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
||||
)
|
||||
if presents is not None and type(presents) is torch.Tensor:
|
||||
presents = presents.split(1, dim=0)
|
||||
presents = list(presents)
|
||||
presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
|
||||
presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
|
||||
presents = tuple(presents)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
||||
if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||||
# x: [b, np, sq, hn]
|
||||
b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||||
rot_dim = rope_cache.shape[-2] * 2
|
||||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||||
# truncate to support variable sizes
|
||||
rope_cache = rope_cache[:, :sq]
|
||||
xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
|
||||
rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
|
||||
x_out2 = torch.stack(
|
||||
[
|
||||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||||
],
|
||||
-1,
|
||||
)
|
||||
x_out2 = x_out2.flatten(3)
|
||||
return torch.cat((x_out2, x_pass), dim=-1)
|
||||
|
||||
|
||||
def chatglm4_attention_forward(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
||||
):
|
||||
# hidden_states: [sq, b, h]
|
||||
|
||||
# =================================================
|
||||
# Pre-allocate memory for key-values for inference.
|
||||
# =================================================
|
||||
# =====================
|
||||
# Query, Key, and Value
|
||||
# =====================
|
||||
|
||||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
||||
device = hidden_states.device
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
|
||||
if self.multi_query_attention:
|
||||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||||
[
|
||||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
query_layer = query_layer.view(
|
||||
query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
key_layer = key_layer.view(
|
||||
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
value_layer = value_layer.view(
|
||||
value_layer.size()[:-1]
|
||||
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
||||
)
|
||||
else:
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
3 * self.hidden_size_per_attention_head)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||||
|
||||
# [b, sq, np, hn] -> [b, np, sq, hn]
|
||||
query_layer, key_layer, value_layer = [k.transpose(1, 2)
|
||||
for k in [query_layer, key_layer, value_layer]]
|
||||
|
||||
# apply relative positional encoding (rotary embedding)
|
||||
if isinstance(rotary_pos_emb, tuple) and len(rotary_pos_emb) == 2:
|
||||
# use_fuse_rope, see chatglm2_model_forward
|
||||
cos, sin = rotary_pos_emb
|
||||
rot_dim = cos.shape[-1]
|
||||
query_layer = query_layer.transpose(1, 2)
|
||||
key_layer = key_layer.transpose(1, 2)
|
||||
query_layer_cur = query_layer[..., :rot_dim]
|
||||
key_layer_cur = key_layer[..., :rot_dim]
|
||||
# ipex_llm's apply_rotary_embedding can change the origin storage,
|
||||
# so query_layer will get the result directly.
|
||||
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
|
||||
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
|
||||
query_layer = query_layer.transpose(1, 2)
|
||||
key_layer = key_layer.transpose(1, 2)
|
||||
elif rotary_pos_emb is not None:
|
||||
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
||||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
||||
|
||||
cur_length, batch_size = query_layer.shape[2], query_layer.shape[0]
|
||||
|
||||
# adjust key and value for inference
|
||||
if kv_cache is not None and use_cache:
|
||||
cache_k, cache_v = kv_cache
|
||||
past_length = cache_k.size(2)
|
||||
|
||||
if cache_k.stride()[1] < (past_length + cur_length) * cache_k.size(3):
|
||||
max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_cache_k, new_cache_v = extend_kv_cache(batch_size,
|
||||
key_layer.size(1),
|
||||
self.hidden_size_per_attention_head,
|
||||
past_length,
|
||||
max_cache_length,
|
||||
dtype=query_layer.dtype,
|
||||
device=device)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
|
||||
|
||||
if use_cache:
|
||||
if kv_cache is None:
|
||||
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0),
|
||||
value_layer.unsqueeze(0).unsqueeze(0)), dim=1)
|
||||
else:
|
||||
kv_cache = (key_layer, value_layer)
|
||||
else:
|
||||
kv_cache = None
|
||||
|
||||
if self.multi_query_attention:
|
||||
key_layer = key_layer.unsqueeze(2)
|
||||
key_layer = key_layer.expand(
|
||||
-1, -1,
|
||||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||||
-1, -1
|
||||
)
|
||||
key_layer = key_layer.contiguous().view(
|
||||
key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
|
||||
)
|
||||
value_layer = value_layer.unsqueeze(2)
|
||||
value_layer = value_layer.expand(
|
||||
-1, -1,
|
||||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||||
-1, -1
|
||||
)
|
||||
value_layer = value_layer.contiguous().view(
|
||||
value_layer.size()[:1] +
|
||||
(self.num_attention_heads_per_partition,) + value_layer.size()[3:]
|
||||
)
|
||||
|
||||
# ==================================
|
||||
# core attention computation
|
||||
# ==================================
|
||||
|
||||
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
||||
|
||||
# =================
|
||||
# Output. [sq, b, h]
|
||||
# =================
|
||||
|
||||
output = self.dense(context_layer)
|
||||
|
||||
return output, kv_cache
|
||||
Loading…
Reference in a new issue