Refactor some functions to ipex_llm.transformers.models.common (#13091)

* add quantize_linear & linear_forward

* add moe_group_topk

* rotary_two_with_cache_inplaced

* fix code style

* update related models
This commit is contained in:
Ruonan Wang 2025-04-18 11:15:43 +08:00 committed by GitHub
parent 73198d5b80
commit 2f78afcd2a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 64 additions and 10 deletions

View file

@ -17,6 +17,7 @@
import math
import torch
from typing import List
from ipex_llm.utils.common import invalidInputError
def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
@ -303,3 +304,56 @@ def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor,
)
attn_output = attn_output.to(dtype) # workaround ipex 2.1's bug
return attn_output
def linear_forward(x: torch.Tensor, weight: torch.Tensor, qtype: int, out_features: int):
if weight.device.type == "xpu":
new_shape = x.shape[:-1] + (out_features,)
x = x.to(weight.device, dtype=torch.float16)
x_2d = x.contiguous().view(-1, x.shape[-1])
import xe_linear
x = xe_linear.forward_new(x_2d, weight, qtype, out_features)
x = x.view(new_shape)
return x
else:
invalidInputError(False,
"Unsupported device type: only support weight on xpu device.")
def quantize_linear(weight: torch.Tensor, in_features: int, precision: str):
from ipex_llm.transformers.low_bit_linear import FP4Params
from ipex_llm.ggml.quantize import ggml_tensor_qtype
invalidInputError(precision in ggml_tensor_qtype.keys(),
f"{precision} is not supported, "
f"only {ggml_tensor_qtype.keys()} are supported now.")
qtype = ggml_tensor_qtype[precision]
paramsLowBit = FP4Params(data=weight.data,
requires_grad=False,
quantized=False,
_shape=None,
convert_shape_only=False,
qtype=qtype,
in_features=in_features,
enable_scale_search=False).to("cpu")
return paramsLowBit, qtype
def moe_group_topk(scores: torch.Tensor, e_score_correction_bias: torch.Tensor,
n_group: int, topk_group: int, top_k: int, norm_topk_prob: float,
routed_scaling_factor: float):
import xe_addons
topk_idx, topk_weight = xe_addons.moe_group_topk(
scores, e_score_correction_bias,
n_group, 2, topk_group, top_k,
top_k > 1 and norm_topk_prob, 1e-20, routed_scaling_factor
)
return topk_idx, topk_weight
def rotary_two_with_cache_inplaced(query_states: torch.Tensor, key_states: torch.Tensor,
cos: torch.Tensor, sin: torch.Tensor,
half_layout: bool):
import xe_addons
xe_addons.rotary_two_with_cache_inplaced(query_states, key_states,
cos, sin, half_layout)

View file

@ -228,11 +228,11 @@ def deepseek_attention_forward(
[k_nope, k_pe.expand([-1, self.num_heads, -1, -1])],
dim=-1
)
import xe_addons
cos, sin = position_embeddings
xe_addons.rotary_two_with_cache_inplaced(query_states[:, :, :, self.qk_nope_head_dim:],
key_states[:, :, :, self.qk_nope_head_dim:],
cos, sin, True)
from ipex_llm.transformers.models.common import rotary_two_with_cache_inplaced
rotary_two_with_cache_inplaced(query_states[:, :, :, self.qk_nope_head_dim:],
key_states[:, :, :, self.qk_nope_head_dim:],
cos, sin, True)
else:
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
@ -279,11 +279,11 @@ def fuse_gate_forward(self, x: torch.Tensor):
)
scores = logits.sigmoid()
import xe_addons
topk_idx, topk_weight = xe_addons.moe_group_topk(
from ipex_llm.transformers.models.common import moe_group_topk
topk_idx, topk_weight = moe_group_topk(
scores, self.e_score_correction_bias,
self.n_group, 2, self.topk_group, self.top_k,
self.top_k > 1 and self.norm_topk_prob, 1e-20, self.routed_scaling_factor
self.n_group, self.topk_group, self.top_k,
self.norm_topk_prob, self.routed_scaling_factor
)
else:
topk_idx, topk_weight = self(x)

View file

@ -98,9 +98,9 @@ def glm_attention_forward(
cos, sin = position_embeddings
if query_states.device.type == "xpu":
import xe_addons
make_cache_contiguous_inplaced(cos, sin)
xe_addons.rotary_two_with_cache_inplaced(query_states, key_states, cos, sin, True)
from ipex_llm.transformers.models.common import rotary_two_with_cache_inplaced
rotary_two_with_cache_inplaced(query_states, key_states, cos, sin, True)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)