add phi3 optimization (#10871)
This commit is contained in:
parent
eb39c61607
commit
2d210817ff
3 changed files with 216 additions and 1 deletions
|
|
@ -653,6 +653,9 @@ def _optimize_pre(model):
|
|||
if model.config.model_type == "phi":
|
||||
from ipex_llm.transformers.models.phi import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
if model.config.model_type == "phi3":
|
||||
from ipex_llm.transformers.models.phi3 import split_mlp
|
||||
model.apply(split_mlp)
|
||||
if model.config.model_type == "qwen":
|
||||
rope_base = model.config.rotary_emb_base
|
||||
from accelerate.big_modeling import init_empty_weights
|
||||
|
|
@ -1426,6 +1429,17 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
from ipex_llm.transformers.models.phi import model_forward
|
||||
convert_forward(model, module.PhiAttention, attention_forward)
|
||||
convert_forward(model, module.PhiModel, model_forward)
|
||||
elif model.config.model_type == "phi3":
|
||||
# for phi-3
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.phi3 import attention_forward
|
||||
convert_forward(model, module.Phi3Attention, attention_forward)
|
||||
from ipex_llm.transformers.models.phi3 import mlp_forward
|
||||
convert_forward(model, module.Phi3MLP, mlp_forward)
|
||||
from ipex_llm.transformers.models.phi3 import model_forward_wrapper
|
||||
model_forward = model_forward_wrapper(module.Phi3Model.forward)
|
||||
convert_forward(model, module.Phi3Model, model_forward)
|
||||
elif model.config.model_type == 'yuan':
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
|
|
|||
193
python/llm/src/ipex_llm/transformers/models/phi3.py
Normal file
193
python/llm/src/ipex_llm/transformers/models/phi3.py
Normal file
|
|
@ -0,0 +1,193 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
from ipex_llm.transformers.models.utils import (
|
||||
rotate_half, should_use_fuse_rope,
|
||||
apply_rotary_pos_emb_cache_freq_xpu
|
||||
)
|
||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
|
||||
from ipex_llm.transformers.kv import DynamicNormalCache
|
||||
|
||||
from typing import Optional, Tuple, List
|
||||
from transformers.models.phi.modeling_phi import repeat_kv
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||||
cos = cos.unsqueeze(unsqueeze_dim)
|
||||
sin = sin.unsqueeze(unsqueeze_dim)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
warnings.warn("You are not running the flash-attention implementation, "
|
||||
"expect numerical differences.")
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
qkv = qkv.transpose(1, 2)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_key_value_heads,
|
||||
self.num_key_value_heads], dim=1)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
|
||||
sin, cos, "phi3")
|
||||
else:
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None:
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, None)
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(value_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
def split_mlp(module: torch.nn.Module):
|
||||
if module.__class__.__name__ == "Phi3MLP":
|
||||
gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)
|
||||
|
||||
gate_proj = torch.nn.Linear(0, 0, bias=False)
|
||||
gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False)
|
||||
gate_proj.in_features = gate_weight.size(1)
|
||||
gate_proj.out_features = gate_weight.size(0)
|
||||
|
||||
up_proj = torch.nn.Linear(0, 0, bias=False)
|
||||
up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False)
|
||||
up_proj.in_features = up_weight.size(1)
|
||||
up_proj.out_features = up_weight.size(0)
|
||||
|
||||
module.gate_proj = gate_proj
|
||||
module.up_proj = up_proj
|
||||
|
||||
del module.gate_up_proj
|
||||
|
||||
|
||||
def mlp_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor
|
||||
) -> torch.FloatTensor:
|
||||
x_2d = hidden_states.view(-1, hidden_states.shape[-1])
|
||||
qtype = getattr(self.gate_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training):
|
||||
x_2d = x_2d.contiguous()
|
||||
import linear_q4_0
|
||||
return self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
|
||||
SILU, qtype
|
||||
))
|
||||
return self.down_proj(
|
||||
self.activation_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)
|
||||
)
|
||||
|
||||
|
||||
def model_forward_wrapper(origin_model_forward):
|
||||
def model_forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
# IPEX-LLM OPT: kv cache but no sdp (its head_dim 96, cannot use sdp)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
if use_cache:
|
||||
if not isinstance(past_key_values, DynamicNormalCache):
|
||||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||
return origin_model_forward(
|
||||
self=self,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
return model_forward
|
||||
|
|
@ -167,6 +167,14 @@ def rotate_every_two(x):
|
|||
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
||||
|
||||
|
||||
def should_use_fuse_rope(hidden_states, position_ids, training):
|
||||
return (
|
||||
hidden_states.device.type == "xpu"
|
||||
and not training and not hidden_states.requires_grad
|
||||
and position_ids is not None
|
||||
)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
||||
"mixtral", "qwen2", "yuan", "stablelm", "qwen2_moe"]:
|
||||
|
|
@ -234,7 +242,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
|
|||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
elif model_family in ["gemma"]:
|
||||
elif model_family in ["gemma", "phi3"]:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
|
|
|
|||
Loading…
Reference in a new issue