add phi3 optimization (#10871)
This commit is contained in:
		
							parent
							
								
									eb39c61607
								
							
						
					
					
						commit
						2d210817ff
					
				
					 3 changed files with 216 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -653,6 +653,9 @@ def _optimize_pre(model):
 | 
			
		|||
    if model.config.model_type == "phi":
 | 
			
		||||
        from ipex_llm.transformers.models.phi import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    if model.config.model_type == "phi3":
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import split_mlp
 | 
			
		||||
        model.apply(split_mlp)
 | 
			
		||||
    if model.config.model_type == "qwen":
 | 
			
		||||
        rope_base = model.config.rotary_emb_base
 | 
			
		||||
        from accelerate.big_modeling import init_empty_weights
 | 
			
		||||
| 
						 | 
				
			
			@ -1426,6 +1429,17 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        from ipex_llm.transformers.models.phi import model_forward
 | 
			
		||||
        convert_forward(model, module.PhiAttention, attention_forward)
 | 
			
		||||
        convert_forward(model, module.PhiModel, model_forward)
 | 
			
		||||
    elif model.config.model_type == "phi3":
 | 
			
		||||
        # for phi-3
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import attention_forward
 | 
			
		||||
        convert_forward(model, module.Phi3Attention, attention_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import mlp_forward
 | 
			
		||||
        convert_forward(model, module.Phi3MLP, mlp_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import model_forward_wrapper
 | 
			
		||||
        model_forward = model_forward_wrapper(module.Phi3Model.forward)
 | 
			
		||||
        convert_forward(model, module.Phi3Model, model_forward)
 | 
			
		||||
    elif model.config.model_type == 'yuan':
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										193
									
								
								python/llm/src/ipex_llm/transformers/models/phi3.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										193
									
								
								python/llm/src/ipex_llm/transformers/models/phi3.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,193 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.models.utils import (
 | 
			
		||||
    rotate_half, should_use_fuse_rope,
 | 
			
		||||
    apply_rotary_pos_emb_cache_freq_xpu
 | 
			
		||||
)
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
from transformers.models.phi.modeling_phi import repeat_kv
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
 | 
			
		||||
    cos = cos.unsqueeze(unsqueeze_dim)
 | 
			
		||||
    sin = sin.unsqueeze(unsqueeze_dim)
 | 
			
		||||
    q_embed = (q * cos) + (rotate_half(q) * sin)
 | 
			
		||||
    k_embed = (k * cos) + (rotate_half(k) * sin)
 | 
			
		||||
    return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    warnings.warn("You are not running the flash-attention implementation, "
 | 
			
		||||
                  "expect numerical differences.")
 | 
			
		||||
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_key_value_heads,
 | 
			
		||||
                                                        self.num_key_value_heads], dim=1)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
 | 
			
		||||
    # IPEX-LLM OPT: fuse rope
 | 
			
		||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
			
		||||
                                                                       sin, cos, "phi3")
 | 
			
		||||
    else:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, None)
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                               dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
    attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                               training=self.training)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def split_mlp(module: torch.nn.Module):
 | 
			
		||||
    if module.__class__.__name__ == "Phi3MLP":
 | 
			
		||||
        gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)
 | 
			
		||||
 | 
			
		||||
        gate_proj = torch.nn.Linear(0, 0, bias=False)
 | 
			
		||||
        gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False)
 | 
			
		||||
        gate_proj.in_features = gate_weight.size(1)
 | 
			
		||||
        gate_proj.out_features = gate_weight.size(0)
 | 
			
		||||
 | 
			
		||||
        up_proj = torch.nn.Linear(0, 0, bias=False)
 | 
			
		||||
        up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False)
 | 
			
		||||
        up_proj.in_features = up_weight.size(1)
 | 
			
		||||
        up_proj.out_features = up_weight.size(0)
 | 
			
		||||
 | 
			
		||||
        module.gate_proj = gate_proj
 | 
			
		||||
        module.up_proj = up_proj
 | 
			
		||||
 | 
			
		||||
        del module.gate_up_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mlp_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.FloatTensor
 | 
			
		||||
) -> torch.FloatTensor:
 | 
			
		||||
    x_2d = hidden_states.view(-1, hidden_states.shape[-1])
 | 
			
		||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
			
		||||
    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
			
		||||
        x_2d = x_2d.contiguous()
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        return self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
    return self.down_proj(
 | 
			
		||||
        self.activation_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def model_forward_wrapper(origin_model_forward):
 | 
			
		||||
    def model_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        # IPEX-LLM OPT: kv cache but no sdp (its head_dim 96, cannot use sdp)
 | 
			
		||||
        use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            if not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
                past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        return origin_model_forward(
 | 
			
		||||
            self=self,
 | 
			
		||||
            input_ids=input_ids,
 | 
			
		||||
            attention_mask=attention_mask,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            past_key_values=past_key_values,
 | 
			
		||||
            inputs_embeds=inputs_embeds,
 | 
			
		||||
            use_cache=use_cache,
 | 
			
		||||
            output_attentions=output_attentions,
 | 
			
		||||
            output_hidden_states=output_hidden_states,
 | 
			
		||||
            return_dict=return_dict,
 | 
			
		||||
        )
 | 
			
		||||
    return model_forward
 | 
			
		||||
| 
						 | 
				
			
			@ -167,6 +167,14 @@ def rotate_every_two(x):
 | 
			
		|||
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(hidden_states, position_ids, training):
 | 
			
		||||
    return (
 | 
			
		||||
        hidden_states.device.type == "xpu"
 | 
			
		||||
        and not training and not hidden_states.requires_grad
 | 
			
		||||
        and position_ids is not None
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
 | 
			
		||||
    if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
 | 
			
		||||
                        "mixtral", "qwen2", "yuan", "stablelm", "qwen2_moe"]:
 | 
			
		||||
| 
						 | 
				
			
			@ -234,7 +242,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
 | 
			
		|||
        cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
			
		||||
        sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
			
		||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
 | 
			
		||||
    elif model_family in ["gemma"]:
 | 
			
		||||
    elif model_family in ["gemma", "phi3"]:
 | 
			
		||||
        cos = cos.unsqueeze(1)
 | 
			
		||||
        sin = sin.unsqueeze(1)
 | 
			
		||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue