LLM: Update ppl tests (#10092)

* update ppl tests

* use load_dataset api

* add exception handling

* add language argument

* address comments
This commit is contained in:
Ovo233 2024-02-06 17:31:48 +08:00 committed by GitHub
parent 3a46b57253
commit 2aaa21c41d
3 changed files with 124 additions and 87 deletions

View file

@ -1,11 +1,20 @@
# Perplexity
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [llm_perplexity.py](https://github.com/luo-cheng2021/ov.cpu.llm.experimental/blob/main/llm_perplexity.py)
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [benchmark_patch_llm.py](https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py)
## HOW TO RUN
```python
python run.py --model_path <path/to/model> --precisions sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --dataset path=<dataset_path>,name=<dataset_name>
```bash
python run.py --model_path <path/to/model> --precisions sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --datasets dataset_names --dataset_path <path/to/dataset> --language en
```
A more specific example to run perplexity on Llama2-7B and wikitext:
```python
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sym_int4 --device xpu --dataset path=wikitext,name=wikitext-2-raw-v1
```
A more specific example to run perplexity on Llama2-7B using the default English datasets:
```bash
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sym_int4 --device xpu --language en
```
> Note: We currently only support the `THUDM/LongBench` [dataset](https://github.com/THUDM/LongBench)
- If you want to test model perplexity on a few selected datasets from the `LongBench` dataset, please use the format below.
```bash
--datasets narrativeqa qasper ...
```
- The `language` argument will only take effect if `datasets` is `None`. The choices for this argument are `en, zh, all`, which stands for all the English datasets, all the Chinese datasets and all the datasets respectively during testing.
- If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command.

View file

@ -14,77 +14,69 @@
# limitations under the License.
#
import intel_extension_for_pytorch as ipex
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from tqdm import tqdm
from transformers import AutoTokenizer
import gc
from bigdl.llm.transformers import AutoModelForCausalLM
class PPL:
def __init__(self):
self.nll = 0
self.cnt = 0
def __call__(self, all_logits, labels):
'''
all_logits [seq_length, vocab_size]
labels [seq_length]
'''
seq_length = all_logits.shape[0]
for i in range(0, seq_length - 1):
logits = all_logits[i, :]
max_logit = np.amax(logits)
sum_exp = np.sum(np.exp(logits - max_logit))
# logits at time-step i is for predicting token at time-step (i+1)
next_tok = labels[i + 1]
log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
self.nll += -log_softmax_of_tok
self.cnt += 1
return np.exp(self.nll / self.cnt)
def result(self):
return np.exp(self.nll / self.cnt)
def __str__(self):
return f"PPL: {np.exp(self.nll / self.cnt):.3f}"
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
class BigDLPPL:
def __init__(self, model_path, device, **model_kwargs) -> None:
model_kwargs['trust_remote_code'] = model_kwargs.get('trust_remote_code', True)
model_kwargs['optimize_model'] = model_kwargs.get('optimize_model', True)
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
if 'xpu' in device:
import intel_extension_for_pytorch as ipex
if 'chatglm' in model_path.lower():
self.model = AutoModel.from_pretrained(model_path, **model_kwargs)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
self.model.to(device)
self.ppl_evaluator = PPL()
def perplexity_hf(self, text):
inputs = self.tokenizer('\n\n'.join(text), return_tensors='pt').to(self.device)
input_ids = inputs['input_ids']
# attention_mask = inputs['attention_mask']
progress_bar = tqdm(range(0, input_ids.shape[1], 512))
for i0 in progress_bar:
input_ids_chunks = input_ids[:, i0:(i0+512)]
input_ids_chunks[:, 0] = 1
with torch.no_grad():
result = self.model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
#print(f"ppl = {torch.exp(result.loss)}")
seq_len = result.logits.shape[1]
data = result.logits
data = data.to('cpu')
input_ids_chunks = input_ids_chunks.to('cpu')
self.ppl_evaluator(data.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
progress_bar.set_description(f"{self.ppl_evaluator}")
torch.xpu.synchronize()
torch.xpu.empty_cache()
del self.model
gc.collect()
def perplexity_hf(self, encoded_texts):
self.model.eval()
loss_fct = CrossEntropyLoss(reduction="none")
ppls = []
try:
pbar = tqdm(range(len(encoded_texts)))
for bid in pbar:
encoded_batch = encoded_texts[bid:bid+1]
if type(encoded_batch) == dict:
attn_mask = encoded_batch['attention_mask'] if 'attention_mask' in encoded_batch.keys() else None
encoded_batch = encoded_batch['input_ids']
elif type(encoded_batch) == list:
encoded_batch = encoded_batch[0]
encoded_batch = encoded_batch.to(self.device)
attn_mask = torch.ones_like(encoded_batch)
out_logits = self.model(encoded_batch).logits
labels = encoded_batch
shift_logits = out_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_attention_mask_batch = attn_mask[..., 1:].contiguous()
loss_ = loss_fct(shift_logits.transpose(1, 2), shift_labels).float()
perplexity_batch = torch.exp2(
(loss_ * shift_attention_mask_batch).sum(1)
/ shift_attention_mask_batch.sum(1)
)
ppls += perplexity_batch.tolist()
pbar.set_description(f"[{bid:<4}/{len(encoded_texts)}] avg_ppls: {np.mean(np.array(ppls)[~np.isnan(np.array(ppls))]):.4f}")
del out_logits, encoded_batch, attn_mask, shift_logits, shift_labels, shift_attention_mask_batch, perplexity_batch
ppl_mean = np.mean(np.array(ppls)[~np.isnan(np.array(ppls))])
finally:
torch.xpu.synchronize()
torch.xpu.empty_cache()
del self.model
gc.collect()
return self.ppl_evaluator.result()
return ppl_mean

View file

@ -14,45 +14,81 @@
# limitations under the License.
#
import torch
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from ppl import BigDLPPL
from datasets import load_dataset
import argparse
from tqdm import tqdm
import torch
from datasets import concatenate_datasets, load_dataset
from transformers import AutoTokenizer
from ppl import BigDLPPL
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
def parse_kwargs(kwstr):
kvpair = [item.split('=') for item in kwstr.split(',') if item != ""]
return {k:v for k, v in kvpair}
import os
def parse_args():
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--seq_len", type=int, default=512)
parser.add_argument("--model_path", required=True, type=str)
parser.add_argument("--datasets", required=False, type=str, default=None, nargs='*')
parser.add_argument("--dataset_path", required=False, type=str, default=None)
parser.add_argument("--language", required=False, type=str, default="en", choices=['en', 'zh', 'all'])
parser.add_argument("--precisions", required=False, type=str, default=None, nargs='+')
parser.add_argument("--model_kwargs", required=False, type=str, default="")
parser.add_argument("--torch_dtype", type=str, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--dataset", type=str, default='path=wikitext,name=wikitext-2-raw-v1')
parser.add_argument("--device", type=str, default="xpu")
return parser.parse_args()
@torch.no_grad()
def main():
args = parse_args()
text = load_dataset(**parse_kwargs(args.dataset), split="test")["text"]
additional_model_kwargs = parse_kwargs(args.model_kwargs)
args = get_arguments()
for arg_name, arg_var in args.__dict__.items():
print(f"{arg_name:<16} : {arg_var}")
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
tokenizer.model_max_length = args.seq_len
en_datasets = ["narrativeqa", "qasper", "multifieldqa_en", "hotpotqa", "2wikimqa", "musique", "gov_report",
"qmsum", "multi_news", "trec", "triviaqa", "samsum", "passage_count", "passage_retrieval_en"]
zh_datasets = ["multifieldqa_zh", "dureader", "vcsum", "lsht", "passage_retrieval_zh"]
if args.datasets is None:
if args.language == 'en':
datasets = en_datasets
elif args.language == 'zh':
datasets = zh_datasets
else:
datasets = en_datasets + zh_datasets
else:
datasets = args.datasets
dataset_all = []
for dataset_name in datasets:
data_ = load_dataset(os.path.join(args.dataset_path, dataset_name), split='test') if args.dataset_path \
else load_dataset('THUDM/LongBench', f'{dataset_name}', split='test')
dataset_all.append(data_)
data = concatenate_datasets(dataset_all)
encoded_texts = []
pbar = tqdm(data)
for i, data_i in enumerate(pbar):
encoded_text = tokenizer.encode(data_i['context'], return_tensors='pt', truncation=True)
pbar.set_description(f"seq_len: {len(encoded_text[0])}, n_data: {len(encoded_texts)}")
if len(encoded_text[0]) < args.seq_len:
continue
encoded_texts.append(encoded_text)
summary = {}
for precision in args.precisions:
model_kwargs = additional_model_kwargs.copy()
model_kwargs = {}
if precision in ggml_tensor_qtype.keys():
model_kwargs['load_in_low_bit'] = precision
else:
model_kwargs['torch_dtype'] = getattr(torch, precision)
print(model_kwargs)
ppl_evaluator = BigDLPPL(model_path=args.model_path, device=args.device, **model_kwargs)
ppl = ppl_evaluator.perplexity_hf(text)
ppl = ppl_evaluator.perplexity_hf(encoded_texts)
summary[precision] = ppl
print(summary)
main()
if __name__ == "__main__":
main()