refactor codegeex to remove ipex kernel usage (#12664)
This commit is contained in:
parent
525b0ee991
commit
29ad5c449e
2 changed files with 7 additions and 215 deletions
|
|
@ -1052,7 +1052,8 @@ def _optimize_pre(model, qtype=None):
|
|||
_optimize_pre(model.llm, qtype=qtype)
|
||||
model.llm.config.model_type = "megrezo"
|
||||
elif model.config.model_type == "chatglm":
|
||||
if hasattr(model.config, 'padded_vocab_size') and model.config.padded_vocab_size == 65024:
|
||||
if hasattr(model.config, 'padded_vocab_size') and \
|
||||
model.config.padded_vocab_size in [65024, 64896]:
|
||||
# chatglm2 and chatglm3
|
||||
from ipex_llm.transformers.models.chatglm2 import split_mlp
|
||||
model.apply(split_mlp)
|
||||
|
|
@ -1337,7 +1338,7 @@ def _optimize_post(model):
|
|||
and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]
|
||||
):
|
||||
if hasattr(model.config, 'padded_vocab_size') and \
|
||||
model.config.padded_vocab_size == 65024:
|
||||
model.config.padded_vocab_size in [65024, 64896]:
|
||||
# chatglm2-6b, chatglm2-6b-32k, chatglm3-6b, chatglm3-6b-32k, chatglm3-6b-128k
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
|
@ -1359,27 +1360,9 @@ def _optimize_post(model):
|
|||
module.RMSNorm,
|
||||
chatglm_rms_norm_forward)
|
||||
convert_forward(model, module.MLP, mlp_forward)
|
||||
elif hasattr(model.config, 'padded_vocab_size') and \
|
||||
model.config.padded_vocab_size == 64896:
|
||||
# codegeex-nano
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.chatglm2 import codegeex_attention_forward
|
||||
from ipex_llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
||||
from ipex_llm.transformers.models.chatglm2 import chatglm2_encoder_forward
|
||||
from ipex_llm.transformers.models.chatglm2 import codegeex_model_forward
|
||||
convert_forward(model,
|
||||
module.SelfAttention,
|
||||
codegeex_attention_forward)
|
||||
convert_forward(model,
|
||||
module.GLMTransformer,
|
||||
chatglm2_encoder_forward)
|
||||
convert_forward(model,
|
||||
module.ChatGLMModel,
|
||||
codegeex_model_forward)
|
||||
convert_forward(model,
|
||||
module.RMSNorm,
|
||||
chatglm_rms_norm_forward)
|
||||
# for codegeex-nano
|
||||
if hasattr(model.config, "rope_ratio"):
|
||||
model.transformer.rotary_pos_emb.rope_ratio = model.config.rope_ratio
|
||||
elif hasattr(model.config, 'vocab_size') and model.config.vocab_size == 130528:
|
||||
# chatglm-6b
|
||||
modeling_module_name = model.__class__.__module__
|
||||
|
|
|
|||
|
|
@ -269,7 +269,7 @@ def chatglm2_attention_forward(
|
|||
# IPEX-LLM OPT: fuse rope
|
||||
inv_freq, position_ids = rotary_pos_emb
|
||||
rot_dim = inv_freq.size(-1) * 2
|
||||
if should_use_fuse_rope(hidden_states, rotary_pos_emb[1], self.training):
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
import xe_addons
|
||||
xe_addons.rotary_two_inplaced(inv_freq, position_ids,
|
||||
query_states[..., :rot_dim], key_states[..., :rot_dim])
|
||||
|
|
@ -321,197 +321,6 @@ def chatglm2_attention_forward(
|
|||
return output, past_key_value
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def apply_rotary_pos_emb_original(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||||
# x: [sq, b, np, hn]
|
||||
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||||
rot_dim = rope_cache.shape[-2] * 2
|
||||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||||
# truncate to support variable sizes
|
||||
rope_cache = rope_cache[:sq]
|
||||
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
||||
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
||||
x_out2 = torch.stack(
|
||||
[
|
||||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||||
],
|
||||
-1,
|
||||
)
|
||||
x_out2 = x_out2.flatten(3)
|
||||
return torch.cat((x_out2, x_pass), dim=-1)
|
||||
|
||||
|
||||
def codegeex_model_forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids: Optional[torch.Tensor]=None,
|
||||
attention_mask: Optional[torch.BoolTensor]=None,
|
||||
full_attention_mask: Optional[torch.BoolTensor]=None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
|
||||
inputs_embeds: Optional[torch.Tensor]=None,
|
||||
use_cache: Optional[bool]=None,
|
||||
output_hidden_states: Optional[bool]=None,
|
||||
return_dict: Optional[bool]=None,
|
||||
):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if inputs_embeds is None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
else:
|
||||
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
|
||||
seq_length, batch_size, _ = inputs_embeds.shape
|
||||
input_ids = torch.empty((batch_size, seq_length),
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or (
|
||||
past_key_values and seq_length != 1):
|
||||
full_attention_mask = self.get_masks(input_ids,
|
||||
past_key_values,
|
||||
padding_mask=attention_mask)
|
||||
|
||||
# ipex-llm changes begin
|
||||
# 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids`
|
||||
# 2. generate `causal_mask` and replace `full_attention_mask` with it
|
||||
if position_ids is None:
|
||||
if past_key_values is None:
|
||||
position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device)
|
||||
else:
|
||||
if isinstance(past_key_values, DynamicCompressCache):
|
||||
kv_length = past_key_values.get_seq_length()
|
||||
else:
|
||||
kv_length = past_key_values[0][0].size(0)
|
||||
position_ids = torch.arange(kv_length, kv_length + seq_length,
|
||||
dtype=torch.int64, device=inputs_embeds.device)
|
||||
position_ids = position_ids.repeat(batch_size, 1)
|
||||
use_fuse_rope = input_ids.device.type == "xpu" and not self.training
|
||||
|
||||
# Rotary positional embeddings
|
||||
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
||||
if position_ids is not None:
|
||||
rotary_pos_emb = rotary_pos_emb[position_ids]
|
||||
else:
|
||||
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
||||
if use_fuse_rope:
|
||||
# Repeat cos sin here, call only once for each token.
|
||||
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
|
||||
# If put this to attension forward, it will generate too many times.
|
||||
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
|
||||
cos = cos.squeeze(-1)
|
||||
sin = sin.squeeze(-1)
|
||||
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
||||
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
||||
rotary_pos_emb = (cos, sin)
|
||||
else:
|
||||
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
||||
|
||||
# `full_attention_mask` is not None only when
|
||||
# `past_key_values` is not None and `seq_length` > 1
|
||||
if full_attention_mask is not None:
|
||||
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
mask_value = torch.finfo(inputs_embeds.dtype).min
|
||||
causal_mask.masked_fill_(full_attention_mask, mask_value)
|
||||
elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None):
|
||||
full_attention_mask = self.get_masks(input_ids,
|
||||
past_key_values,
|
||||
padding_mask=attention_mask)
|
||||
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
mask_value = torch.finfo(inputs_embeds.dtype).min
|
||||
causal_mask.masked_fill_(full_attention_mask, mask_value)
|
||||
else:
|
||||
causal_mask = None
|
||||
|
||||
# Run encoder.
|
||||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||||
inputs_embeds, causal_mask,
|
||||
rotary_pos_emb=rotary_pos_emb,
|
||||
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
||||
)
|
||||
# ipex-llm changes end
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
||||
if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
|
||||
def codegeex_attention_forward(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
||||
):
|
||||
q_len, bsz, _ = hidden_states.size()
|
||||
n_head = self.num_attention_heads_per_partition
|
||||
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
|
||||
head_dim = self.hidden_size_per_attention_head
|
||||
|
||||
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
||||
kv_cache[1].permute(1, 2, 0, 3))
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim)
|
||||
# [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim]
|
||||
qkv = qkv.permute(1, 2, 0, 3)
|
||||
query_layer, key_layer, value_layer = qkv.split([n_head,
|
||||
n_kv_head,
|
||||
n_kv_head], dim=1)
|
||||
kv_seq_len = key_layer.shape[2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[2]
|
||||
|
||||
# apply relative positional encoding (rotary embedding)
|
||||
if len(rotary_pos_emb) == 2 and isinstance(rotary_pos_emb, tuple):
|
||||
cos, sin = rotary_pos_emb
|
||||
rot_dim = cos.shape[-1]
|
||||
query_layer = query_layer.transpose(1, 2)
|
||||
key_layer = key_layer.transpose(1, 2)
|
||||
query_layer_cur = query_layer[..., :rot_dim]
|
||||
key_layer_cur = key_layer[..., :rot_dim]
|
||||
# ipex_llm's apply_rotary_embedding can change the origin storage,
|
||||
# so query_layer will get the result directly.
|
||||
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
|
||||
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
|
||||
query_layer = query_layer.transpose(1, 2)
|
||||
key_layer = key_layer.transpose(1, 2)
|
||||
else:
|
||||
query_layer = apply_rotary_pos_emb_original(query_layer, rotary_pos_emb)
|
||||
key_layer = apply_rotary_pos_emb_original(key_layer, rotary_pos_emb)
|
||||
|
||||
key_layer, value_layer = update_past_key_value(
|
||||
past_key_value, key_layer, value_layer,
|
||||
kv_seq_len, False, hidden_states.device
|
||||
)
|
||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
||||
past_key_value = (key_layer.permute(2, 0, 1, 3),
|
||||
value_layer.permute(2, 0, 1, 3)) if use_cache else None
|
||||
|
||||
# =================
|
||||
# Output. [sq, b, h]
|
||||
# =================
|
||||
context_layer = scaled_dot_product_attention(
|
||||
query_layer, key_layer, value_layer,
|
||||
attention_mask, q_len == kv_seq_len
|
||||
)
|
||||
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len,
|
||||
bsz,
|
||||
n_head * head_dim)
|
||||
output = self.dense(context_layer)
|
||||
|
||||
return output, past_key_value
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue