LLM: add patching function for llm finetuning (#10247)
This commit is contained in:
		
							parent
							
								
									158a49986a
								
							
						
					
					
						commit
						2958ca49c0
					
				
					 12 changed files with 597 additions and 1 deletions
				
			
		
							
								
								
									
										37
									
								
								python/llm/example/GPU/LLM-Finetuning/HF-PEFT/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								python/llm/example/GPU/LLM-Finetuning/HF-PEFT/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,37 @@
 | 
			
		|||
# Finetuning on Intel GPU using Hugging Face PEFT code
 | 
			
		||||
 | 
			
		||||
This example demonstrates how to easily run LLM finetuning application of PEFT use BigDL-LLM 4bit optimizations using [Intel GPUs](../../../README.md). By applying BigDL-LLM patch, you could run Hugging Face PEFT code on Intel GPUs using BigDL-LLM optimization without modification.
 | 
			
		||||
 | 
			
		||||
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
 | 
			
		||||
 | 
			
		||||
### 0. Requirements
 | 
			
		||||
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
### 1. Install
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.34.0 datasets
 | 
			
		||||
pip install fire peft==0.5.0
 | 
			
		||||
pip install oneccl_bind_pt==2.1.100 -f https://developer.intel.com/ipex-whl-stable-xpu # necessary to run distributed finetuning
 | 
			
		||||
pip install accelerate==0.23.0
 | 
			
		||||
pip install bitsandbytes scipy
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Finetune
 | 
			
		||||
 | 
			
		||||
This example shows how to run [Alpaca LoRA Training](https://github.com/tloen/alpaca-lora/tree/main) directly on Intel GPU.
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
cd alpaca-lora
 | 
			
		||||
python ./finetune.py --base_model "meta-llama/Llama-2-7b-hf" \
 | 
			
		||||
                     --data_path "yahma/alpaca-cleaned"
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,319 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# This file is copied from
 | 
			
		||||
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
 | 
			
		||||
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
# http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
from bigdl.llm import llm_patch
 | 
			
		||||
llm_patch(train=True)
 | 
			
		||||
 | 
			
		||||
# The following is the original LLM finetuning code using PEFT (without BigDL-LLM)
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
from typing import List
 | 
			
		||||
 | 
			
		||||
import fire
 | 
			
		||||
import torch
 | 
			
		||||
import transformers
 | 
			
		||||
from datasets import load_dataset
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
Unused imports:
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import bitsandbytes as bnb
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from peft import (
 | 
			
		||||
    LoraConfig,
 | 
			
		||||
    get_peft_model,
 | 
			
		||||
    get_peft_model_state_dict,
 | 
			
		||||
    prepare_model_for_int8_training,
 | 
			
		||||
    set_peft_model_state_dict,
 | 
			
		||||
)
 | 
			
		||||
from transformers import LlamaForCausalLM, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
from utils.prompter import Prompter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def train(
 | 
			
		||||
    # model/data params
 | 
			
		||||
    base_model: str = "",  # the only required argument
 | 
			
		||||
    data_path: str = "yahma/alpaca-cleaned",
 | 
			
		||||
    output_dir: str = "./lora-alpaca",
 | 
			
		||||
    # training hyperparams
 | 
			
		||||
    batch_size: int = 128,
 | 
			
		||||
    micro_batch_size: int = 4,
 | 
			
		||||
    num_epochs: int = 3,
 | 
			
		||||
    learning_rate: float = 3e-4,
 | 
			
		||||
    cutoff_len: int = 256,
 | 
			
		||||
    val_set_size: int = 2000,
 | 
			
		||||
    # lora hyperparams
 | 
			
		||||
    lora_r: int = 8,
 | 
			
		||||
    lora_alpha: int = 16,
 | 
			
		||||
    lora_dropout: float = 0.05,
 | 
			
		||||
    lora_target_modules: List[str] = [
 | 
			
		||||
        "q_proj",
 | 
			
		||||
        "v_proj",
 | 
			
		||||
    ],
 | 
			
		||||
    # llm hyperparams
 | 
			
		||||
    train_on_inputs: bool = True,  # if False, masks out inputs in loss
 | 
			
		||||
    add_eos_token: bool = False,
 | 
			
		||||
    group_by_length: bool = False,  # faster, but produces an odd training loss curve
 | 
			
		||||
    # wandb params
 | 
			
		||||
    wandb_project: str = "",
 | 
			
		||||
    wandb_run_name: str = "",
 | 
			
		||||
    wandb_watch: str = "",  # options: false | gradients | all
 | 
			
		||||
    wandb_log_model: str = "",  # options: false | true
 | 
			
		||||
    resume_from_checkpoint: str = None,  # either training checkpoint or final adapter
 | 
			
		||||
    prompt_template_name: str = "alpaca",  # The prompt template to use, will default to alpaca.
 | 
			
		||||
):
 | 
			
		||||
    if int(os.environ.get("LOCAL_RANK", 0)) == 0:
 | 
			
		||||
        print(
 | 
			
		||||
            f"Training Alpaca-LoRA model with params:\n"
 | 
			
		||||
            f"base_model: {base_model}\n"
 | 
			
		||||
            f"data_path: {data_path}\n"
 | 
			
		||||
            f"output_dir: {output_dir}\n"
 | 
			
		||||
            f"batch_size: {batch_size}\n"
 | 
			
		||||
            f"micro_batch_size: {micro_batch_size}\n"
 | 
			
		||||
            f"num_epochs: {num_epochs}\n"
 | 
			
		||||
            f"learning_rate: {learning_rate}\n"
 | 
			
		||||
            f"cutoff_len: {cutoff_len}\n"
 | 
			
		||||
            f"val_set_size: {val_set_size}\n"
 | 
			
		||||
            f"lora_r: {lora_r}\n"
 | 
			
		||||
            f"lora_alpha: {lora_alpha}\n"
 | 
			
		||||
            f"lora_dropout: {lora_dropout}\n"
 | 
			
		||||
            f"lora_target_modules: {lora_target_modules}\n"
 | 
			
		||||
            f"train_on_inputs: {train_on_inputs}\n"
 | 
			
		||||
            f"add_eos_token: {add_eos_token}\n"
 | 
			
		||||
            f"group_by_length: {group_by_length}\n"
 | 
			
		||||
            f"wandb_project: {wandb_project}\n"
 | 
			
		||||
            f"wandb_run_name: {wandb_run_name}\n"
 | 
			
		||||
            f"wandb_watch: {wandb_watch}\n"
 | 
			
		||||
            f"wandb_log_model: {wandb_log_model}\n"
 | 
			
		||||
            f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
 | 
			
		||||
            f"prompt template: {prompt_template_name}\n"
 | 
			
		||||
        )
 | 
			
		||||
    assert (
 | 
			
		||||
        base_model
 | 
			
		||||
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
 | 
			
		||||
    gradient_accumulation_steps = batch_size // micro_batch_size
 | 
			
		||||
 | 
			
		||||
    prompter = Prompter(prompt_template_name)
 | 
			
		||||
 | 
			
		||||
    device_map = "auto"
 | 
			
		||||
    world_size = int(os.environ.get("WORLD_SIZE", 1))
 | 
			
		||||
    ddp = world_size != 1
 | 
			
		||||
    if ddp:
 | 
			
		||||
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
 | 
			
		||||
        gradient_accumulation_steps = gradient_accumulation_steps // world_size
 | 
			
		||||
 | 
			
		||||
    # Check if parameter passed or if set within environ
 | 
			
		||||
    use_wandb = len(wandb_project) > 0 or (
 | 
			
		||||
        "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
 | 
			
		||||
    )
 | 
			
		||||
    # Only overwrite environ if wandb param passed
 | 
			
		||||
    if len(wandb_project) > 0:
 | 
			
		||||
        os.environ["WANDB_PROJECT"] = wandb_project
 | 
			
		||||
    if len(wandb_watch) > 0:
 | 
			
		||||
        os.environ["WANDB_WATCH"] = wandb_watch
 | 
			
		||||
    if len(wandb_log_model) > 0:
 | 
			
		||||
        os.environ["WANDB_LOG_MODEL"] = wandb_log_model
 | 
			
		||||
 | 
			
		||||
    model = LlamaForCausalLM.from_pretrained(
 | 
			
		||||
        base_model,
 | 
			
		||||
        load_in_8bit=True,
 | 
			
		||||
        torch_dtype=torch.float16,
 | 
			
		||||
        device_map=device_map,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    tokenizer = LlamaTokenizer.from_pretrained(base_model)
 | 
			
		||||
 | 
			
		||||
    tokenizer.pad_token_id = (
 | 
			
		||||
        0  # unk. we want this to be different from the eos token
 | 
			
		||||
    )
 | 
			
		||||
    tokenizer.padding_side = "left"  # Allow batched inference
 | 
			
		||||
 | 
			
		||||
    def tokenize(prompt, add_eos_token=True):
 | 
			
		||||
        # there's probably a way to do this with the tokenizer settings
 | 
			
		||||
        # but again, gotta move fast
 | 
			
		||||
        result = tokenizer(
 | 
			
		||||
            prompt,
 | 
			
		||||
            truncation=True,
 | 
			
		||||
            max_length=cutoff_len,
 | 
			
		||||
            padding=False,
 | 
			
		||||
            return_tensors=None,
 | 
			
		||||
        )
 | 
			
		||||
        if (
 | 
			
		||||
            result["input_ids"][-1] != tokenizer.eos_token_id
 | 
			
		||||
            and len(result["input_ids"]) < cutoff_len
 | 
			
		||||
            and add_eos_token
 | 
			
		||||
        ):
 | 
			
		||||
            result["input_ids"].append(tokenizer.eos_token_id)
 | 
			
		||||
            result["attention_mask"].append(1)
 | 
			
		||||
 | 
			
		||||
        result["labels"] = result["input_ids"].copy()
 | 
			
		||||
 | 
			
		||||
        return result
 | 
			
		||||
 | 
			
		||||
    def generate_and_tokenize_prompt(data_point):
 | 
			
		||||
        full_prompt = prompter.generate_prompt(
 | 
			
		||||
            data_point["instruction"],
 | 
			
		||||
            data_point["input"],
 | 
			
		||||
            data_point["output"],
 | 
			
		||||
        )
 | 
			
		||||
        tokenized_full_prompt = tokenize(full_prompt)
 | 
			
		||||
        if not train_on_inputs:
 | 
			
		||||
            user_prompt = prompter.generate_prompt(
 | 
			
		||||
                data_point["instruction"], data_point["input"]
 | 
			
		||||
            )
 | 
			
		||||
            tokenized_user_prompt = tokenize(
 | 
			
		||||
                user_prompt, add_eos_token=add_eos_token
 | 
			
		||||
            )
 | 
			
		||||
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
 | 
			
		||||
 | 
			
		||||
            if add_eos_token:
 | 
			
		||||
                user_prompt_len -= 1
 | 
			
		||||
 | 
			
		||||
            tokenized_full_prompt["labels"] = [
 | 
			
		||||
                -100
 | 
			
		||||
            ] * user_prompt_len + tokenized_full_prompt["labels"][
 | 
			
		||||
                user_prompt_len:
 | 
			
		||||
            ]  # could be sped up, probably
 | 
			
		||||
        return tokenized_full_prompt
 | 
			
		||||
 | 
			
		||||
    model = prepare_model_for_int8_training(model)
 | 
			
		||||
 | 
			
		||||
    config = LoraConfig(
 | 
			
		||||
        r=lora_r,
 | 
			
		||||
        lora_alpha=lora_alpha,
 | 
			
		||||
        target_modules=lora_target_modules,
 | 
			
		||||
        lora_dropout=lora_dropout,
 | 
			
		||||
        bias="none",
 | 
			
		||||
        task_type="CAUSAL_LM",
 | 
			
		||||
    )
 | 
			
		||||
    model = get_peft_model(model, config)
 | 
			
		||||
 | 
			
		||||
    if data_path.endswith(".json") or data_path.endswith(".jsonl"):
 | 
			
		||||
        data = load_dataset("json", data_files=data_path)
 | 
			
		||||
    else:
 | 
			
		||||
        data = load_dataset(data_path)
 | 
			
		||||
 | 
			
		||||
    if resume_from_checkpoint:
 | 
			
		||||
        # Check the available weights and load them
 | 
			
		||||
        checkpoint_name = os.path.join(
 | 
			
		||||
            resume_from_checkpoint, "pytorch_model.bin"
 | 
			
		||||
        )  # Full checkpoint
 | 
			
		||||
        if not os.path.exists(checkpoint_name):
 | 
			
		||||
            checkpoint_name = os.path.join(
 | 
			
		||||
                resume_from_checkpoint, "adapter_model.bin"
 | 
			
		||||
            )  # only LoRA model - LoRA config above has to fit
 | 
			
		||||
            resume_from_checkpoint = (
 | 
			
		||||
                False  # So the trainer won't try loading its state
 | 
			
		||||
            )
 | 
			
		||||
        # The two files above have a different name depending on how they were saved, but are actually the same.
 | 
			
		||||
        if os.path.exists(checkpoint_name):
 | 
			
		||||
            print(f"Restarting from {checkpoint_name}")
 | 
			
		||||
            adapters_weights = torch.load(checkpoint_name)
 | 
			
		||||
            set_peft_model_state_dict(model, adapters_weights)
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"Checkpoint {checkpoint_name} not found")
 | 
			
		||||
 | 
			
		||||
    model.print_trainable_parameters()  # Be more transparent about the % of trainable params.
 | 
			
		||||
 | 
			
		||||
    if val_set_size > 0:
 | 
			
		||||
        train_val = data["train"].train_test_split(
 | 
			
		||||
            test_size=val_set_size, shuffle=True, seed=42
 | 
			
		||||
        )
 | 
			
		||||
        train_data = (
 | 
			
		||||
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
 | 
			
		||||
        )
 | 
			
		||||
        val_data = (
 | 
			
		||||
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
 | 
			
		||||
        val_data = None
 | 
			
		||||
 | 
			
		||||
    if not ddp and torch.cuda.device_count() > 1:
 | 
			
		||||
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
 | 
			
		||||
        model.is_parallelizable = True
 | 
			
		||||
        model.model_parallel = True
 | 
			
		||||
 | 
			
		||||
    trainer = transformers.Trainer(
 | 
			
		||||
        model=model,
 | 
			
		||||
        train_dataset=train_data,
 | 
			
		||||
        eval_dataset=val_data,
 | 
			
		||||
        args=transformers.TrainingArguments(
 | 
			
		||||
            per_device_train_batch_size=micro_batch_size,
 | 
			
		||||
            gradient_accumulation_steps=gradient_accumulation_steps,
 | 
			
		||||
            warmup_steps=100,
 | 
			
		||||
            num_train_epochs=num_epochs,
 | 
			
		||||
            learning_rate=learning_rate,
 | 
			
		||||
            fp16=True,
 | 
			
		||||
            logging_steps=10,
 | 
			
		||||
            optim="adamw_torch",
 | 
			
		||||
            evaluation_strategy="steps" if val_set_size > 0 else "no",
 | 
			
		||||
            save_strategy="steps",
 | 
			
		||||
            eval_steps=200 if val_set_size > 0 else None,
 | 
			
		||||
            save_steps=200,
 | 
			
		||||
            output_dir=output_dir,
 | 
			
		||||
            save_total_limit=3,
 | 
			
		||||
            load_best_model_at_end=True if val_set_size > 0 else False,
 | 
			
		||||
            ddp_find_unused_parameters=False if ddp else None,
 | 
			
		||||
            group_by_length=group_by_length,
 | 
			
		||||
            report_to="wandb" if use_wandb else None,
 | 
			
		||||
            run_name=wandb_run_name if use_wandb else None,
 | 
			
		||||
        ),
 | 
			
		||||
        data_collator=transformers.DataCollatorForSeq2Seq(
 | 
			
		||||
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
 | 
			
		||||
        ),
 | 
			
		||||
    )
 | 
			
		||||
    model.config.use_cache = False
 | 
			
		||||
 | 
			
		||||
    old_state_dict = model.state_dict
 | 
			
		||||
    model.state_dict = (
 | 
			
		||||
        lambda self, *_, **__: get_peft_model_state_dict(
 | 
			
		||||
            self, old_state_dict()
 | 
			
		||||
        )
 | 
			
		||||
    ).__get__(model, type(model))
 | 
			
		||||
 | 
			
		||||
    if torch.__version__ >= "2" and sys.platform != "win32":
 | 
			
		||||
        model = torch.compile(model)
 | 
			
		||||
 | 
			
		||||
    trainer.train(resume_from_checkpoint=resume_from_checkpoint)
 | 
			
		||||
 | 
			
		||||
    model.save_pretrained(output_dir)
 | 
			
		||||
 | 
			
		||||
    print(
 | 
			
		||||
        "\n If there's a warning about missing keys above, please disregard :)"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    fire.Fire(train)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,7 @@
 | 
			
		|||
{
 | 
			
		||||
    "//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca.json",
 | 
			
		||||
    "description": "Template used by Alpaca-LoRA.",
 | 
			
		||||
    "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
 | 
			
		||||
    "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
 | 
			
		||||
    "response_split": "### Response:"    
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,7 @@
 | 
			
		|||
{
 | 
			
		||||
    "//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca_legacy.json",
 | 
			
		||||
    "description": "Legacy template, used by Original Alpaca repository.",
 | 
			
		||||
    "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:",
 | 
			
		||||
    "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:",
 | 
			
		||||
    "response_split": "### Response:"    
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,7 @@
 | 
			
		|||
{
 | 
			
		||||
    "//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca_short.json",
 | 
			
		||||
    "description": "A shorter template to experiment with.",
 | 
			
		||||
    "prompt_input": "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
 | 
			
		||||
    "prompt_no_input": "### Instruction:\n{instruction}\n\n### Response:\n",
 | 
			
		||||
    "response_split": "### Response:"    
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,7 @@
 | 
			
		|||
{
 | 
			
		||||
    "//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/vigogne.json",
 | 
			
		||||
    "description": "French template, used by Vigogne for finetuning.",
 | 
			
		||||
    "prompt_input": "Ci-dessous se trouve une instruction qui décrit une tâche, associée à une entrée qui fournit un contexte supplémentaire. Écrivez une réponse qui complète correctement la demande.\n\n### Instruction:\n{instruction}\n\n### Entrée:\n{input}\n\n### Réponse:\n",
 | 
			
		||||
    "prompt_no_input": "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n### Instruction:\n{instruction}\n\n### Réponse:\n",
 | 
			
		||||
    "response_split": "### Réponse:"
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,83 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# This file is copied from
 | 
			
		||||
# https://github.com/tloen/alpaca-lora/blob/main/utils/prompter.py
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
 | 
			
		||||
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
# http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
A dedicated helper to manage templates and prompt building.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import json
 | 
			
		||||
import os.path as osp
 | 
			
		||||
from typing import Union
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Prompter(object):
 | 
			
		||||
    __slots__ = ("template", "_verbose")
 | 
			
		||||
 | 
			
		||||
    def __init__(self, template_name: str = "", verbose: bool = False):
 | 
			
		||||
        self._verbose = verbose
 | 
			
		||||
        if not template_name:
 | 
			
		||||
            # Enforce the default here, so the constructor can be called with '' and will not break.
 | 
			
		||||
            template_name = "alpaca"
 | 
			
		||||
        file_name = osp.join("templates", f"{template_name}.json")
 | 
			
		||||
        if not osp.exists(file_name):
 | 
			
		||||
            raise ValueError(f"Can't read {file_name}")
 | 
			
		||||
        with open(file_name) as fp:
 | 
			
		||||
            self.template = json.load(fp)
 | 
			
		||||
        if self._verbose:
 | 
			
		||||
            print(
 | 
			
		||||
                f"Using prompt template {template_name}: {self.template['description']}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def generate_prompt(
 | 
			
		||||
        self,
 | 
			
		||||
        instruction: str,
 | 
			
		||||
        input: Union[None, str] = None,
 | 
			
		||||
        label: Union[None, str] = None,
 | 
			
		||||
    ) -> str:
 | 
			
		||||
        # returns the full prompt from instruction and optional input
 | 
			
		||||
        # if a label (=response, =output) is provided, it's also appended.
 | 
			
		||||
        if input:
 | 
			
		||||
            res = self.template["prompt_input"].format(
 | 
			
		||||
                instruction=instruction, input=input
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            res = self.template["prompt_no_input"].format(
 | 
			
		||||
                instruction=instruction
 | 
			
		||||
            )
 | 
			
		||||
        if label:
 | 
			
		||||
            res = f"{res}{label}"
 | 
			
		||||
        if self._verbose:
 | 
			
		||||
            print(res)
 | 
			
		||||
        return res
 | 
			
		||||
 | 
			
		||||
    def get_response(self, output: str) -> str:
 | 
			
		||||
        return output.split(self.template["response_split"])[1].strip()
 | 
			
		||||
| 
						 | 
				
			
			@ -8,6 +8,7 @@ This folder contains examples of running different training mode with BigDL-LLM
 | 
			
		|||
- [ReLora](ReLora): examples of running ReLora finetuning
 | 
			
		||||
- [DPO](DPO): examples of running DPO finetuning
 | 
			
		||||
- [common](common): common templates and utility classes in finetuning examples
 | 
			
		||||
- [HF-PEFT](HF-PEFT): run finetuning on Intel GPU using Hugging Face PEFT code without modification
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Troubleshooting
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -22,6 +22,7 @@
 | 
			
		|||
from .convert_model import llm_convert
 | 
			
		||||
from .optimize import optimize_model
 | 
			
		||||
import os
 | 
			
		||||
from .llm_patching import llm_patch, llm_unpatch
 | 
			
		||||
 | 
			
		||||
# Default is false, set to true to auto importing Intel Extension for PyTorch.
 | 
			
		||||
BIGDL_IMPORT_IPEX = os.getenv("BIGDL_IMPORT_IPEX", 'True').lower() in ('true', '1', 't')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										79
									
								
								python/llm/src/bigdl/llm/llm_patching.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								python/llm/src/bigdl/llm/llm_patching.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,79 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import transformers
 | 
			
		||||
import importlib
 | 
			
		||||
import sys
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from enum import Enum
 | 
			
		||||
 | 
			
		||||
bigdl_patched = None  # None or 'Train' or 'Inference'
 | 
			
		||||
attrs = []
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def replace_attr(obj, name: str, value):
 | 
			
		||||
    original_attr = getattr(obj, name)
 | 
			
		||||
    setattr(obj, name, value)
 | 
			
		||||
    attrs.append((obj, name, original_attr))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llm_patch(train=False):
 | 
			
		||||
    '''
 | 
			
		||||
    llm_patch is used to make users' LLM application benefit from BigDL-LLM optimization
 | 
			
		||||
    with only one-line code patch.
 | 
			
		||||
 | 
			
		||||
    :param train: Whether to apply bigdl-llm patch for training code, default to be `False`.
 | 
			
		||||
    '''
 | 
			
		||||
    global bigdl_patched
 | 
			
		||||
    if bigdl_patched:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Initial version of patch for llm finetuning, inference support TBD
 | 
			
		||||
    if train:
 | 
			
		||||
        from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
 | 
			
		||||
        replace_attr(transformers, "AutoModelForCausalLM", AutoModelForCausalLM)
 | 
			
		||||
        replace_attr(transformers, "LlamaForCausalLM", AutoModelForCausalLM)
 | 
			
		||||
        replace_attr(transformers, "AutoModel", AutoModel)
 | 
			
		||||
 | 
			
		||||
        import_peft_check = 'peft' in sys.modules or 'peft.utils' in sys.modules or \
 | 
			
		||||
            'peft.tuners' in sys.modules or 'peft.mapping' in sys.modules
 | 
			
		||||
        invalidInputError(not import_peft_check,
 | 
			
		||||
                          'llm_patch() should be called at the beginning of your code.')
 | 
			
		||||
        import peft
 | 
			
		||||
        from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training,\
 | 
			
		||||
            LoraConfig, TrainingArguments
 | 
			
		||||
        replace_attr(transformers, "TrainingArguments", TrainingArguments)
 | 
			
		||||
        get_peft_model_original = getattr(peft, "get_peft_model")
 | 
			
		||||
        replace_attr(peft, "get_peft_model", get_peft_model)
 | 
			
		||||
        setattr(peft, "get_peft_model_original", get_peft_model_original)
 | 
			
		||||
        replace_attr(peft, "prepare_model_for_kbit_training", prepare_model_for_kbit_training)
 | 
			
		||||
        replace_attr(peft, "prepare_model_for_int8_training", prepare_model_for_kbit_training)
 | 
			
		||||
        replace_attr(peft, "LoraConfig", LoraConfig)
 | 
			
		||||
        bigdl_patched = 'Train'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llm_unpatch():
 | 
			
		||||
    '''
 | 
			
		||||
    llm_unpatch is an reverse function to llm_patch.
 | 
			
		||||
    '''
 | 
			
		||||
    global bigdl_patched
 | 
			
		||||
 | 
			
		||||
    if bigdl_patched is None:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    for obj, name, torch_attr in attrs:
 | 
			
		||||
        setattr(obj, name, torch_attr)
 | 
			
		||||
    bigdl_patched = None
 | 
			
		||||
| 
						 | 
				
			
			@ -50,6 +50,8 @@ import warnings
 | 
			
		|||
import copy
 | 
			
		||||
from .utils import logger
 | 
			
		||||
 | 
			
		||||
patched_training_mode = None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def save_low_bit(self, *args, **kwargs):
 | 
			
		||||
    invalidInputError(self.config.to_dict().get("bigdl_transformers_low_bit", False),
 | 
			
		||||
| 
						 | 
				
			
			@ -215,6 +217,20 @@ class _BaseAutoModelClass:
 | 
			
		|||
            optimize_model = False
 | 
			
		||||
            kwargs["modules_to_not_convert"] = ["lm_head"]
 | 
			
		||||
 | 
			
		||||
        load_in_8bit = kwargs.pop("load_in_8bit", False)
 | 
			
		||||
        from bigdl.llm.llm_patching import bigdl_patched
 | 
			
		||||
        if bigdl_patched == 'Train':
 | 
			
		||||
            global patched_training_mode
 | 
			
		||||
            if load_in_low_bit == "nf4" or load_in_low_bit == "sym_int4" or load_in_4bit:
 | 
			
		||||
                # qlora
 | 
			
		||||
                patched_training_mode = 'qlora'
 | 
			
		||||
            else:
 | 
			
		||||
                # lora
 | 
			
		||||
                patched_training_mode = 'lora'
 | 
			
		||||
                load_in_low_bit = "bf16"
 | 
			
		||||
            optimize_model = False
 | 
			
		||||
            kwargs["modules_to_not_convert"] = ["lm_head"]
 | 
			
		||||
 | 
			
		||||
        if load_in_4bit or load_in_low_bit:
 | 
			
		||||
 | 
			
		||||
            if config_dict.get("quantization_config", None) is not None:
 | 
			
		||||
| 
						 | 
				
			
			@ -413,6 +429,8 @@ class _BaseAutoModelClass:
 | 
			
		|||
        else:
 | 
			
		||||
            _load_pre()
 | 
			
		||||
            try:
 | 
			
		||||
                # To handle the input CUDA setting (such as 'device_map={"":0}'), ignore it
 | 
			
		||||
                kwargs.pop('device_map', None)
 | 
			
		||||
                model = cls.HF_Model.from_pretrained(*args, **kwargs)
 | 
			
		||||
            except NotImplementedError:
 | 
			
		||||
                logger.info("Failed to load models with `low_cpu_mem_usage` specified, "
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -234,6 +234,8 @@ def _create_new_module(create_new_module_func, lora_config, adapter_name, target
 | 
			
		|||
 | 
			
		||||
from peft.tuners.lora import LoraModel
 | 
			
		||||
from peft.tuners.lora import LoraConfig as LoraConfigBase
 | 
			
		||||
from transformers import TrainingArguments as TrainingArgumentsBase
 | 
			
		||||
from transformers.training_args import OptimizerNames
 | 
			
		||||
from dataclasses import dataclass, field
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -241,6 +243,30 @@ from dataclasses import dataclass, field
 | 
			
		|||
class LoraConfig(LoraConfigBase):
 | 
			
		||||
    training_mode: str = field(default="qlora", metadata={"help": "determine training mode"})
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        self.training_mode = kwargs.pop("training_mode", "qlora")
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        from bigdl.llm.llm_patching import bigdl_patched
 | 
			
		||||
        if bigdl_patched == 'Train':
 | 
			
		||||
            from .model import patched_training_mode
 | 
			
		||||
            self.training_mode = patched_training_mode
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
supported_optim = ["adamw_hf", "adamw_torch", "adafactor", "sgd", "adagrad", "rmsprop"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class TrainingArguments(TrainingArgumentsBase):
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        kwargs["fp16"] = False
 | 
			
		||||
        kwargs["bf16"] = True
 | 
			
		||||
        for optim in supported_optim.copy():
 | 
			
		||||
            supported_optim.append(OptimizerNames(optim))
 | 
			
		||||
        if kwargs["optim"] not in supported_optim:
 | 
			
		||||
            LOG.info(f"{self.optim} is not supported yet and adamw_torch optimizer is used.")
 | 
			
		||||
            kwargs["optim"] = "adamw_torch"
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_peft_model(*args, **kwargs):
 | 
			
		||||
    old_create_new_module = LoraModel._create_new_module
 | 
			
		||||
| 
						 | 
				
			
			@ -248,7 +274,11 @@ def get_peft_model(*args, **kwargs):
 | 
			
		|||
                                                                  old_create_new_module))
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        from peft import get_peft_model as get_peft_model_original
 | 
			
		||||
        from bigdl.llm.llm_patching import bigdl_patched
 | 
			
		||||
        if bigdl_patched == 'Train':
 | 
			
		||||
            from peft import get_peft_model_original
 | 
			
		||||
        else:
 | 
			
		||||
            from peft import get_peft_model as get_peft_model_original
 | 
			
		||||
        model = get_peft_model_original(*args, **kwargs)
 | 
			
		||||
    finally:
 | 
			
		||||
        LoraModel._create_new_module = old_create_new_module
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue