LLM: add patching function for llm finetuning (#10247)
This commit is contained in:
parent
158a49986a
commit
2958ca49c0
12 changed files with 597 additions and 1 deletions
37
python/llm/example/GPU/LLM-Finetuning/HF-PEFT/README.md
Normal file
37
python/llm/example/GPU/LLM-Finetuning/HF-PEFT/README.md
Normal file
|
|
@ -0,0 +1,37 @@
|
|||
# Finetuning on Intel GPU using Hugging Face PEFT code
|
||||
|
||||
This example demonstrates how to easily run LLM finetuning application of PEFT use BigDL-LLM 4bit optimizations using [Intel GPUs](../../../README.md). By applying BigDL-LLM patch, you could run Hugging Face PEFT code on Intel GPUs using BigDL-LLM optimization without modification.
|
||||
|
||||
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
|
||||
|
||||
### 0. Requirements
|
||||
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
|
||||
|
||||
### 1. Install
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install transformers==4.34.0 datasets
|
||||
pip install fire peft==0.5.0
|
||||
pip install oneccl_bind_pt==2.1.100 -f https://developer.intel.com/ipex-whl-stable-xpu # necessary to run distributed finetuning
|
||||
pip install accelerate==0.23.0
|
||||
pip install bitsandbytes scipy
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Finetune
|
||||
|
||||
This example shows how to run [Alpaca LoRA Training](https://github.com/tloen/alpaca-lora/tree/main) directly on Intel GPU.
|
||||
|
||||
```
|
||||
cd alpaca-lora
|
||||
python ./finetune.py --base_model "meta-llama/Llama-2-7b-hf" \
|
||||
--data_path "yahma/alpaca-cleaned"
|
||||
```
|
||||
|
|
@ -0,0 +1,319 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is copied from
|
||||
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
|
||||
#
|
||||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from bigdl.llm import llm_patch
|
||||
llm_patch(train=True)
|
||||
|
||||
# The following is the original LLM finetuning code using PEFT (without BigDL-LLM)
|
||||
import os
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
import fire
|
||||
import torch
|
||||
import transformers
|
||||
from datasets import load_dataset
|
||||
|
||||
"""
|
||||
Unused imports:
|
||||
import torch.nn as nn
|
||||
import bitsandbytes as bnb
|
||||
"""
|
||||
|
||||
from peft import (
|
||||
LoraConfig,
|
||||
get_peft_model,
|
||||
get_peft_model_state_dict,
|
||||
prepare_model_for_int8_training,
|
||||
set_peft_model_state_dict,
|
||||
)
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
from utils.prompter import Prompter
|
||||
|
||||
|
||||
def train(
|
||||
# model/data params
|
||||
base_model: str = "", # the only required argument
|
||||
data_path: str = "yahma/alpaca-cleaned",
|
||||
output_dir: str = "./lora-alpaca",
|
||||
# training hyperparams
|
||||
batch_size: int = 128,
|
||||
micro_batch_size: int = 4,
|
||||
num_epochs: int = 3,
|
||||
learning_rate: float = 3e-4,
|
||||
cutoff_len: int = 256,
|
||||
val_set_size: int = 2000,
|
||||
# lora hyperparams
|
||||
lora_r: int = 8,
|
||||
lora_alpha: int = 16,
|
||||
lora_dropout: float = 0.05,
|
||||
lora_target_modules: List[str] = [
|
||||
"q_proj",
|
||||
"v_proj",
|
||||
],
|
||||
# llm hyperparams
|
||||
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
||||
add_eos_token: bool = False,
|
||||
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
||||
# wandb params
|
||||
wandb_project: str = "",
|
||||
wandb_run_name: str = "",
|
||||
wandb_watch: str = "", # options: false | gradients | all
|
||||
wandb_log_model: str = "", # options: false | true
|
||||
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
|
||||
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
|
||||
):
|
||||
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
||||
print(
|
||||
f"Training Alpaca-LoRA model with params:\n"
|
||||
f"base_model: {base_model}\n"
|
||||
f"data_path: {data_path}\n"
|
||||
f"output_dir: {output_dir}\n"
|
||||
f"batch_size: {batch_size}\n"
|
||||
f"micro_batch_size: {micro_batch_size}\n"
|
||||
f"num_epochs: {num_epochs}\n"
|
||||
f"learning_rate: {learning_rate}\n"
|
||||
f"cutoff_len: {cutoff_len}\n"
|
||||
f"val_set_size: {val_set_size}\n"
|
||||
f"lora_r: {lora_r}\n"
|
||||
f"lora_alpha: {lora_alpha}\n"
|
||||
f"lora_dropout: {lora_dropout}\n"
|
||||
f"lora_target_modules: {lora_target_modules}\n"
|
||||
f"train_on_inputs: {train_on_inputs}\n"
|
||||
f"add_eos_token: {add_eos_token}\n"
|
||||
f"group_by_length: {group_by_length}\n"
|
||||
f"wandb_project: {wandb_project}\n"
|
||||
f"wandb_run_name: {wandb_run_name}\n"
|
||||
f"wandb_watch: {wandb_watch}\n"
|
||||
f"wandb_log_model: {wandb_log_model}\n"
|
||||
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
||||
f"prompt template: {prompt_template_name}\n"
|
||||
)
|
||||
assert (
|
||||
base_model
|
||||
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
||||
gradient_accumulation_steps = batch_size // micro_batch_size
|
||||
|
||||
prompter = Prompter(prompt_template_name)
|
||||
|
||||
device_map = "auto"
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
ddp = world_size != 1
|
||||
if ddp:
|
||||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
||||
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
||||
|
||||
# Check if parameter passed or if set within environ
|
||||
use_wandb = len(wandb_project) > 0 or (
|
||||
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
|
||||
)
|
||||
# Only overwrite environ if wandb param passed
|
||||
if len(wandb_project) > 0:
|
||||
os.environ["WANDB_PROJECT"] = wandb_project
|
||||
if len(wandb_watch) > 0:
|
||||
os.environ["WANDB_WATCH"] = wandb_watch
|
||||
if len(wandb_log_model) > 0:
|
||||
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
||||
|
||||
model = LlamaForCausalLM.from_pretrained(
|
||||
base_model,
|
||||
load_in_8bit=True,
|
||||
torch_dtype=torch.float16,
|
||||
device_map=device_map,
|
||||
)
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
||||
|
||||
tokenizer.pad_token_id = (
|
||||
0 # unk. we want this to be different from the eos token
|
||||
)
|
||||
tokenizer.padding_side = "left" # Allow batched inference
|
||||
|
||||
def tokenize(prompt, add_eos_token=True):
|
||||
# there's probably a way to do this with the tokenizer settings
|
||||
# but again, gotta move fast
|
||||
result = tokenizer(
|
||||
prompt,
|
||||
truncation=True,
|
||||
max_length=cutoff_len,
|
||||
padding=False,
|
||||
return_tensors=None,
|
||||
)
|
||||
if (
|
||||
result["input_ids"][-1] != tokenizer.eos_token_id
|
||||
and len(result["input_ids"]) < cutoff_len
|
||||
and add_eos_token
|
||||
):
|
||||
result["input_ids"].append(tokenizer.eos_token_id)
|
||||
result["attention_mask"].append(1)
|
||||
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
|
||||
return result
|
||||
|
||||
def generate_and_tokenize_prompt(data_point):
|
||||
full_prompt = prompter.generate_prompt(
|
||||
data_point["instruction"],
|
||||
data_point["input"],
|
||||
data_point["output"],
|
||||
)
|
||||
tokenized_full_prompt = tokenize(full_prompt)
|
||||
if not train_on_inputs:
|
||||
user_prompt = prompter.generate_prompt(
|
||||
data_point["instruction"], data_point["input"]
|
||||
)
|
||||
tokenized_user_prompt = tokenize(
|
||||
user_prompt, add_eos_token=add_eos_token
|
||||
)
|
||||
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
||||
|
||||
if add_eos_token:
|
||||
user_prompt_len -= 1
|
||||
|
||||
tokenized_full_prompt["labels"] = [
|
||||
-100
|
||||
] * user_prompt_len + tokenized_full_prompt["labels"][
|
||||
user_prompt_len:
|
||||
] # could be sped up, probably
|
||||
return tokenized_full_prompt
|
||||
|
||||
model = prepare_model_for_int8_training(model)
|
||||
|
||||
config = LoraConfig(
|
||||
r=lora_r,
|
||||
lora_alpha=lora_alpha,
|
||||
target_modules=lora_target_modules,
|
||||
lora_dropout=lora_dropout,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
model = get_peft_model(model, config)
|
||||
|
||||
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
||||
data = load_dataset("json", data_files=data_path)
|
||||
else:
|
||||
data = load_dataset(data_path)
|
||||
|
||||
if resume_from_checkpoint:
|
||||
# Check the available weights and load them
|
||||
checkpoint_name = os.path.join(
|
||||
resume_from_checkpoint, "pytorch_model.bin"
|
||||
) # Full checkpoint
|
||||
if not os.path.exists(checkpoint_name):
|
||||
checkpoint_name = os.path.join(
|
||||
resume_from_checkpoint, "adapter_model.bin"
|
||||
) # only LoRA model - LoRA config above has to fit
|
||||
resume_from_checkpoint = (
|
||||
False # So the trainer won't try loading its state
|
||||
)
|
||||
# The two files above have a different name depending on how they were saved, but are actually the same.
|
||||
if os.path.exists(checkpoint_name):
|
||||
print(f"Restarting from {checkpoint_name}")
|
||||
adapters_weights = torch.load(checkpoint_name)
|
||||
set_peft_model_state_dict(model, adapters_weights)
|
||||
else:
|
||||
print(f"Checkpoint {checkpoint_name} not found")
|
||||
|
||||
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
|
||||
|
||||
if val_set_size > 0:
|
||||
train_val = data["train"].train_test_split(
|
||||
test_size=val_set_size, shuffle=True, seed=42
|
||||
)
|
||||
train_data = (
|
||||
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
||||
)
|
||||
val_data = (
|
||||
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
||||
)
|
||||
else:
|
||||
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
||||
val_data = None
|
||||
|
||||
if not ddp and torch.cuda.device_count() > 1:
|
||||
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
||||
model.is_parallelizable = True
|
||||
model.model_parallel = True
|
||||
|
||||
trainer = transformers.Trainer(
|
||||
model=model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=val_data,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=micro_batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
warmup_steps=100,
|
||||
num_train_epochs=num_epochs,
|
||||
learning_rate=learning_rate,
|
||||
fp16=True,
|
||||
logging_steps=10,
|
||||
optim="adamw_torch",
|
||||
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
||||
save_strategy="steps",
|
||||
eval_steps=200 if val_set_size > 0 else None,
|
||||
save_steps=200,
|
||||
output_dir=output_dir,
|
||||
save_total_limit=3,
|
||||
load_best_model_at_end=True if val_set_size > 0 else False,
|
||||
ddp_find_unused_parameters=False if ddp else None,
|
||||
group_by_length=group_by_length,
|
||||
report_to="wandb" if use_wandb else None,
|
||||
run_name=wandb_run_name if use_wandb else None,
|
||||
),
|
||||
data_collator=transformers.DataCollatorForSeq2Seq(
|
||||
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
||||
),
|
||||
)
|
||||
model.config.use_cache = False
|
||||
|
||||
old_state_dict = model.state_dict
|
||||
model.state_dict = (
|
||||
lambda self, *_, **__: get_peft_model_state_dict(
|
||||
self, old_state_dict()
|
||||
)
|
||||
).__get__(model, type(model))
|
||||
|
||||
if torch.__version__ >= "2" and sys.platform != "win32":
|
||||
model = torch.compile(model)
|
||||
|
||||
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
||||
|
||||
model.save_pretrained(output_dir)
|
||||
|
||||
print(
|
||||
"\n If there's a warning about missing keys above, please disregard :)"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(train)
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca.json",
|
||||
"description": "Template used by Alpaca-LoRA.",
|
||||
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
|
||||
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
|
||||
"response_split": "### Response:"
|
||||
}
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca_legacy.json",
|
||||
"description": "Legacy template, used by Original Alpaca repository.",
|
||||
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:",
|
||||
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:",
|
||||
"response_split": "### Response:"
|
||||
}
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/alpaca_short.json",
|
||||
"description": "A shorter template to experiment with.",
|
||||
"prompt_input": "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
|
||||
"prompt_no_input": "### Instruction:\n{instruction}\n\n### Response:\n",
|
||||
"response_split": "### Response:"
|
||||
}
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"//": "This file is copied from https://github.com/tloen/alpaca-lora/blob/main/templates/vigogne.json",
|
||||
"description": "French template, used by Vigogne for finetuning.",
|
||||
"prompt_input": "Ci-dessous se trouve une instruction qui décrit une tâche, associée à une entrée qui fournit un contexte supplémentaire. Écrivez une réponse qui complète correctement la demande.\n\n### Instruction:\n{instruction}\n\n### Entrée:\n{input}\n\n### Réponse:\n",
|
||||
"prompt_no_input": "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n### Instruction:\n{instruction}\n\n### Réponse:\n",
|
||||
"response_split": "### Réponse:"
|
||||
}
|
||||
|
|
@ -0,0 +1,83 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is copied from
|
||||
# https://github.com/tloen/alpaca-lora/blob/main/utils/prompter.py
|
||||
#
|
||||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
A dedicated helper to manage templates and prompt building.
|
||||
"""
|
||||
|
||||
import json
|
||||
import os.path as osp
|
||||
from typing import Union
|
||||
|
||||
|
||||
class Prompter(object):
|
||||
__slots__ = ("template", "_verbose")
|
||||
|
||||
def __init__(self, template_name: str = "", verbose: bool = False):
|
||||
self._verbose = verbose
|
||||
if not template_name:
|
||||
# Enforce the default here, so the constructor can be called with '' and will not break.
|
||||
template_name = "alpaca"
|
||||
file_name = osp.join("templates", f"{template_name}.json")
|
||||
if not osp.exists(file_name):
|
||||
raise ValueError(f"Can't read {file_name}")
|
||||
with open(file_name) as fp:
|
||||
self.template = json.load(fp)
|
||||
if self._verbose:
|
||||
print(
|
||||
f"Using prompt template {template_name}: {self.template['description']}"
|
||||
)
|
||||
|
||||
def generate_prompt(
|
||||
self,
|
||||
instruction: str,
|
||||
input: Union[None, str] = None,
|
||||
label: Union[None, str] = None,
|
||||
) -> str:
|
||||
# returns the full prompt from instruction and optional input
|
||||
# if a label (=response, =output) is provided, it's also appended.
|
||||
if input:
|
||||
res = self.template["prompt_input"].format(
|
||||
instruction=instruction, input=input
|
||||
)
|
||||
else:
|
||||
res = self.template["prompt_no_input"].format(
|
||||
instruction=instruction
|
||||
)
|
||||
if label:
|
||||
res = f"{res}{label}"
|
||||
if self._verbose:
|
||||
print(res)
|
||||
return res
|
||||
|
||||
def get_response(self, output: str) -> str:
|
||||
return output.split(self.template["response_split"])[1].strip()
|
||||
|
|
@ -8,6 +8,7 @@ This folder contains examples of running different training mode with BigDL-LLM
|
|||
- [ReLora](ReLora): examples of running ReLora finetuning
|
||||
- [DPO](DPO): examples of running DPO finetuning
|
||||
- [common](common): common templates and utility classes in finetuning examples
|
||||
- [HF-PEFT](HF-PEFT): run finetuning on Intel GPU using Hugging Face PEFT code without modification
|
||||
|
||||
|
||||
## Troubleshooting
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@
|
|||
from .convert_model import llm_convert
|
||||
from .optimize import optimize_model
|
||||
import os
|
||||
from .llm_patching import llm_patch, llm_unpatch
|
||||
|
||||
# Default is false, set to true to auto importing Intel Extension for PyTorch.
|
||||
BIGDL_IMPORT_IPEX = os.getenv("BIGDL_IMPORT_IPEX", 'True').lower() in ('true', '1', 't')
|
||||
|
|
|
|||
79
python/llm/src/bigdl/llm/llm_patching.py
Normal file
79
python/llm/src/bigdl/llm/llm_patching.py
Normal file
|
|
@ -0,0 +1,79 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import transformers
|
||||
import importlib
|
||||
import sys
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from enum import Enum
|
||||
|
||||
bigdl_patched = None # None or 'Train' or 'Inference'
|
||||
attrs = []
|
||||
|
||||
|
||||
def replace_attr(obj, name: str, value):
|
||||
original_attr = getattr(obj, name)
|
||||
setattr(obj, name, value)
|
||||
attrs.append((obj, name, original_attr))
|
||||
|
||||
|
||||
def llm_patch(train=False):
|
||||
'''
|
||||
llm_patch is used to make users' LLM application benefit from BigDL-LLM optimization
|
||||
with only one-line code patch.
|
||||
|
||||
:param train: Whether to apply bigdl-llm patch for training code, default to be `False`.
|
||||
'''
|
||||
global bigdl_patched
|
||||
if bigdl_patched:
|
||||
return
|
||||
|
||||
# Initial version of patch for llm finetuning, inference support TBD
|
||||
if train:
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
||||
replace_attr(transformers, "AutoModelForCausalLM", AutoModelForCausalLM)
|
||||
replace_attr(transformers, "LlamaForCausalLM", AutoModelForCausalLM)
|
||||
replace_attr(transformers, "AutoModel", AutoModel)
|
||||
|
||||
import_peft_check = 'peft' in sys.modules or 'peft.utils' in sys.modules or \
|
||||
'peft.tuners' in sys.modules or 'peft.mapping' in sys.modules
|
||||
invalidInputError(not import_peft_check,
|
||||
'llm_patch() should be called at the beginning of your code.')
|
||||
import peft
|
||||
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training,\
|
||||
LoraConfig, TrainingArguments
|
||||
replace_attr(transformers, "TrainingArguments", TrainingArguments)
|
||||
get_peft_model_original = getattr(peft, "get_peft_model")
|
||||
replace_attr(peft, "get_peft_model", get_peft_model)
|
||||
setattr(peft, "get_peft_model_original", get_peft_model_original)
|
||||
replace_attr(peft, "prepare_model_for_kbit_training", prepare_model_for_kbit_training)
|
||||
replace_attr(peft, "prepare_model_for_int8_training", prepare_model_for_kbit_training)
|
||||
replace_attr(peft, "LoraConfig", LoraConfig)
|
||||
bigdl_patched = 'Train'
|
||||
|
||||
|
||||
def llm_unpatch():
|
||||
'''
|
||||
llm_unpatch is an reverse function to llm_patch.
|
||||
'''
|
||||
global bigdl_patched
|
||||
|
||||
if bigdl_patched is None:
|
||||
return
|
||||
|
||||
for obj, name, torch_attr in attrs:
|
||||
setattr(obj, name, torch_attr)
|
||||
bigdl_patched = None
|
||||
|
|
@ -50,6 +50,8 @@ import warnings
|
|||
import copy
|
||||
from .utils import logger
|
||||
|
||||
patched_training_mode = None
|
||||
|
||||
|
||||
def save_low_bit(self, *args, **kwargs):
|
||||
invalidInputError(self.config.to_dict().get("bigdl_transformers_low_bit", False),
|
||||
|
|
@ -215,6 +217,20 @@ class _BaseAutoModelClass:
|
|||
optimize_model = False
|
||||
kwargs["modules_to_not_convert"] = ["lm_head"]
|
||||
|
||||
load_in_8bit = kwargs.pop("load_in_8bit", False)
|
||||
from bigdl.llm.llm_patching import bigdl_patched
|
||||
if bigdl_patched == 'Train':
|
||||
global patched_training_mode
|
||||
if load_in_low_bit == "nf4" or load_in_low_bit == "sym_int4" or load_in_4bit:
|
||||
# qlora
|
||||
patched_training_mode = 'qlora'
|
||||
else:
|
||||
# lora
|
||||
patched_training_mode = 'lora'
|
||||
load_in_low_bit = "bf16"
|
||||
optimize_model = False
|
||||
kwargs["modules_to_not_convert"] = ["lm_head"]
|
||||
|
||||
if load_in_4bit or load_in_low_bit:
|
||||
|
||||
if config_dict.get("quantization_config", None) is not None:
|
||||
|
|
@ -413,6 +429,8 @@ class _BaseAutoModelClass:
|
|||
else:
|
||||
_load_pre()
|
||||
try:
|
||||
# To handle the input CUDA setting (such as 'device_map={"":0}'), ignore it
|
||||
kwargs.pop('device_map', None)
|
||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||
except NotImplementedError:
|
||||
logger.info("Failed to load models with `low_cpu_mem_usage` specified, "
|
||||
|
|
|
|||
|
|
@ -234,6 +234,8 @@ def _create_new_module(create_new_module_func, lora_config, adapter_name, target
|
|||
|
||||
from peft.tuners.lora import LoraModel
|
||||
from peft.tuners.lora import LoraConfig as LoraConfigBase
|
||||
from transformers import TrainingArguments as TrainingArgumentsBase
|
||||
from transformers.training_args import OptimizerNames
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
|
|
@ -241,6 +243,30 @@ from dataclasses import dataclass, field
|
|||
class LoraConfig(LoraConfigBase):
|
||||
training_mode: str = field(default="qlora", metadata={"help": "determine training mode"})
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.training_mode = kwargs.pop("training_mode", "qlora")
|
||||
super().__init__(*args, **kwargs)
|
||||
from bigdl.llm.llm_patching import bigdl_patched
|
||||
if bigdl_patched == 'Train':
|
||||
from .model import patched_training_mode
|
||||
self.training_mode = patched_training_mode
|
||||
|
||||
|
||||
supported_optim = ["adamw_hf", "adamw_torch", "adafactor", "sgd", "adagrad", "rmsprop"]
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments(TrainingArgumentsBase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
kwargs["fp16"] = False
|
||||
kwargs["bf16"] = True
|
||||
for optim in supported_optim.copy():
|
||||
supported_optim.append(OptimizerNames(optim))
|
||||
if kwargs["optim"] not in supported_optim:
|
||||
LOG.info(f"{self.optim} is not supported yet and adamw_torch optimizer is used.")
|
||||
kwargs["optim"] = "adamw_torch"
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
def get_peft_model(*args, **kwargs):
|
||||
old_create_new_module = LoraModel._create_new_module
|
||||
|
|
@ -248,7 +274,11 @@ def get_peft_model(*args, **kwargs):
|
|||
old_create_new_module))
|
||||
|
||||
try:
|
||||
from peft import get_peft_model as get_peft_model_original
|
||||
from bigdl.llm.llm_patching import bigdl_patched
|
||||
if bigdl_patched == 'Train':
|
||||
from peft import get_peft_model_original
|
||||
else:
|
||||
from peft import get_peft_model as get_peft_model_original
|
||||
model = get_peft_model_original(*args, **kwargs)
|
||||
finally:
|
||||
LoraModel._create_new_module = old_create_new_module
|
||||
|
|
|
|||
Loading…
Reference in a new issue