add minicpmv 2.6 load_low_bit workaround (#11856)
This commit is contained in:
parent
7380823f3f
commit
2946420e14
2 changed files with 56 additions and 1 deletions
|
|
@ -1849,6 +1849,11 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
# MiniCPM-V 2.6
|
# MiniCPM-V 2.6
|
||||||
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
||||||
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
|
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
|
||||||
|
|
||||||
|
from ipex_llm.transformers.models.minicpmv import _in_projection_packed
|
||||||
|
resampler_module_name = model.resampler.__class__.__module__
|
||||||
|
resampler_module = importlib.import_module(resampler_module_name)
|
||||||
|
resampler_module._in_projection_packed = _in_projection_packed
|
||||||
elif model.vpm.config.model_type == "idefics2":
|
elif model.vpm.config.model_type == "idefics2":
|
||||||
# MiniCPM-V 2.5
|
# MiniCPM-V 2.5
|
||||||
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,8 @@
|
||||||
|
|
||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
from typing import Optional
|
from typing import Optional, List
|
||||||
|
from torch.nn.functional import linear
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
from ipex_llm.transformers.models.common import attention_softmax
|
from ipex_llm.transformers.models.common import attention_softmax
|
||||||
from transformers import AutoProcessor
|
from transformers import AutoProcessor
|
||||||
|
|
@ -61,6 +62,55 @@ def siglip_attention_forward(
|
||||||
return attn_output, attn_weights
|
return attn_output, attn_weights
|
||||||
|
|
||||||
|
|
||||||
|
# MiniCPM-V-2_6
|
||||||
|
def _in_projection_packed(
|
||||||
|
q: torch.Tensor,
|
||||||
|
k: torch.Tensor,
|
||||||
|
v: torch.Tensor,
|
||||||
|
w: torch.Tensor,
|
||||||
|
b: Optional[torch.Tensor] = None,
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
E = q.size(-1)
|
||||||
|
if k is v:
|
||||||
|
if q is k:
|
||||||
|
# self-attention
|
||||||
|
proj = linear(q, w, b)
|
||||||
|
# reshape to 3, E and not E, 3 is deliberate for
|
||||||
|
# better memory coalescing and keeping same order as chunk()
|
||||||
|
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||||
|
proj = proj.contiguous()
|
||||||
|
return proj[0], proj[1], proj[2]
|
||||||
|
else:
|
||||||
|
# encoder-decoder attention
|
||||||
|
w_q, w_kv = w.split([E, E * 2])
|
||||||
|
if b is None:
|
||||||
|
b_q = b_kv = None
|
||||||
|
else:
|
||||||
|
b_q, b_kv = b.split([E, E * 2])
|
||||||
|
q_proj = linear(q, w_q, b_q)
|
||||||
|
kv_proj = linear(k, w_kv, b_kv)
|
||||||
|
# reshape to 2, E and not E, 2 is deliberate for
|
||||||
|
# better memory coalescing and keeping same order as chunk()
|
||||||
|
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||||
|
kv_proj = kv_proj.contiguous()
|
||||||
|
return (q_proj, kv_proj[0], kv_proj[1])
|
||||||
|
else:
|
||||||
|
w_q, w_k, w_v = w.chunk(3)
|
||||||
|
# ipex-llm changes start: add contiguous to workaround a ipex bug
|
||||||
|
q = q.contiguous()
|
||||||
|
k = k.contiguous()
|
||||||
|
v = v.contiguous()
|
||||||
|
w_q = w_q.contiguous()
|
||||||
|
w_k = w_k.contiguous()
|
||||||
|
w_v = w_v.contiguous()
|
||||||
|
# ipex-llm changes end
|
||||||
|
if b is None:
|
||||||
|
b_q = b_k = b_v = None
|
||||||
|
else:
|
||||||
|
b_q, b_k, b_v = b.chunk(3)
|
||||||
|
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||||||
|
|
||||||
|
|
||||||
# MiniCPM-V-2
|
# MiniCPM-V-2
|
||||||
# modified from timm.models.vision_transformer.Attention.forward
|
# modified from timm.models.vision_transformer.Attention.forward
|
||||||
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
|
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue