add minicpmv 2.6 load_low_bit workaround (#11856)

This commit is contained in:
Yishuo Wang 2024-08-20 11:16:02 +08:00 committed by GitHub
parent 7380823f3f
commit 2946420e14
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 56 additions and 1 deletions

View file

@ -1849,6 +1849,11 @@ def _optimize_post(model, lightweight_bmm=False):
# MiniCPM-V 2.6
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
from ipex_llm.transformers.models.minicpmv import _in_projection_packed
resampler_module_name = model.resampler.__class__.__module__
resampler_module = importlib.import_module(resampler_module_name)
resampler_module._in_projection_packed = _in_projection_packed
elif model.vpm.config.model_type == "idefics2":
# MiniCPM-V 2.5
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward

View file

@ -17,7 +17,8 @@
import math
import torch
from typing import Optional
from typing import Optional, List
from torch.nn.functional import linear
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import attention_softmax
from transformers import AutoProcessor
@ -61,6 +62,55 @@ def siglip_attention_forward(
return attn_output, attn_weights
# MiniCPM-V-2_6
def _in_projection_packed(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
w: torch.Tensor,
b: Optional[torch.Tensor] = None,
) -> List[torch.Tensor]:
E = q.size(-1)
if k is v:
if q is k:
# self-attention
proj = linear(q, w, b)
# reshape to 3, E and not E, 3 is deliberate for
# better memory coalescing and keeping same order as chunk()
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
proj = proj.contiguous()
return proj[0], proj[1], proj[2]
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
q_proj = linear(q, w_q, b_q)
kv_proj = linear(k, w_kv, b_kv)
# reshape to 2, E and not E, 2 is deliberate for
# better memory coalescing and keeping same order as chunk()
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
kv_proj = kv_proj.contiguous()
return (q_proj, kv_proj[0], kv_proj[1])
else:
w_q, w_k, w_v = w.chunk(3)
# ipex-llm changes start: add contiguous to workaround a ipex bug
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
w_q = w_q.contiguous()
w_k = w_k.contiguous()
w_v = w_v.contiguous()
# ipex-llm changes end
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
# MiniCPM-V-2
# modified from timm.models.vision_transformer.Attention.forward
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor: