add minicpmv 2.6 load_low_bit workaround (#11856)
This commit is contained in:
parent
7380823f3f
commit
2946420e14
2 changed files with 56 additions and 1 deletions
|
|
@ -1849,6 +1849,11 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
# MiniCPM-V 2.6
|
||||
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
||||
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
|
||||
|
||||
from ipex_llm.transformers.models.minicpmv import _in_projection_packed
|
||||
resampler_module_name = model.resampler.__class__.__module__
|
||||
resampler_module = importlib.import_module(resampler_module_name)
|
||||
resampler_module._in_projection_packed = _in_projection_packed
|
||||
elif model.vpm.config.model_type == "idefics2":
|
||||
# MiniCPM-V 2.5
|
||||
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
||||
|
|
|
|||
|
|
@ -17,7 +17,8 @@
|
|||
|
||||
import math
|
||||
import torch
|
||||
from typing import Optional
|
||||
from typing import Optional, List
|
||||
from torch.nn.functional import linear
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||
from ipex_llm.transformers.models.common import attention_softmax
|
||||
from transformers import AutoProcessor
|
||||
|
|
@ -61,6 +62,55 @@ def siglip_attention_forward(
|
|||
return attn_output, attn_weights
|
||||
|
||||
|
||||
# MiniCPM-V-2_6
|
||||
def _in_projection_packed(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
w: torch.Tensor,
|
||||
b: Optional[torch.Tensor] = None,
|
||||
) -> List[torch.Tensor]:
|
||||
E = q.size(-1)
|
||||
if k is v:
|
||||
if q is k:
|
||||
# self-attention
|
||||
proj = linear(q, w, b)
|
||||
# reshape to 3, E and not E, 3 is deliberate for
|
||||
# better memory coalescing and keeping same order as chunk()
|
||||
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
proj = proj.contiguous()
|
||||
return proj[0], proj[1], proj[2]
|
||||
else:
|
||||
# encoder-decoder attention
|
||||
w_q, w_kv = w.split([E, E * 2])
|
||||
if b is None:
|
||||
b_q = b_kv = None
|
||||
else:
|
||||
b_q, b_kv = b.split([E, E * 2])
|
||||
q_proj = linear(q, w_q, b_q)
|
||||
kv_proj = linear(k, w_kv, b_kv)
|
||||
# reshape to 2, E and not E, 2 is deliberate for
|
||||
# better memory coalescing and keeping same order as chunk()
|
||||
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
kv_proj = kv_proj.contiguous()
|
||||
return (q_proj, kv_proj[0], kv_proj[1])
|
||||
else:
|
||||
w_q, w_k, w_v = w.chunk(3)
|
||||
# ipex-llm changes start: add contiguous to workaround a ipex bug
|
||||
q = q.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
w_q = w_q.contiguous()
|
||||
w_k = w_k.contiguous()
|
||||
w_v = w_v.contiguous()
|
||||
# ipex-llm changes end
|
||||
if b is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = b.chunk(3)
|
||||
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||||
|
||||
|
||||
# MiniCPM-V-2
|
||||
# modified from timm.models.vision_transformer.Attention.forward
|
||||
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
|
|
|||
Loading…
Reference in a new issue