support npu glm4 (#11539)
This commit is contained in:
		
							parent
							
								
									a1cede926d
								
							
						
					
					
						commit
						2929eb262e
					
				
					 4 changed files with 269 additions and 8 deletions
				
			
		| 
						 | 
				
			
			@ -225,7 +225,7 @@ def chatglm4_attention_forward(
 | 
			
		|||
        key_states = repeat_kv(key_states, n_head // n_kv_head)
 | 
			
		||||
        value_states = repeat_kv(value_states, n_head // n_kv_head)
 | 
			
		||||
        attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
 | 
			
		||||
                                    key_states.transpose(2, 3)).to(value_states.dtype)
 | 
			
		||||
                                    key_states.transpose(2, 3))
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -279,7 +279,7 @@ def chatglm4v_attention_forward(
 | 
			
		|||
        key_states = repeat_kv(key_states, n_head // n_kv_head)
 | 
			
		||||
        value_states = repeat_kv(value_states, n_head // n_kv_head)
 | 
			
		||||
        attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
 | 
			
		||||
                                    key_states.transpose(2, 3)).to(value_states.dtype)
 | 
			
		||||
                                    key_states.transpose(2, 3))
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        if kv_seq_len >= 2048 or bsz >= 64:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										251
									
								
								python/llm/src/ipex_llm/transformers/npu_models/chatglm4.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										251
									
								
								python/llm/src/ipex_llm/transformers/npu_models/chatglm4.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,251 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# This file is adapted from
 | 
			
		||||
# https://huggingface.co/THUDM/chatglm2-6b-32k/blob/main/configuration_chatglm.py
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, Tuple, Union
 | 
			
		||||
from ipex_llm.transformers.models.utils import update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.npu_models.chatglm import repeat_kv
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm4_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids,
 | 
			
		||||
    position_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
    attention_mask: Optional[torch.BoolTensor] = None,
 | 
			
		||||
    full_attention_mask: Optional[torch.BoolTensor] = None,
 | 
			
		||||
    past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
 | 
			
		||||
    inputs_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None else
 | 
			
		||||
        self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        batch_size, seq_length = input_ids.shape
 | 
			
		||||
        inputs_embeds = self.embedding(input_ids)
 | 
			
		||||
    else:
 | 
			
		||||
        batch_size, seq_length, _ = inputs_embeds.shape
 | 
			
		||||
        input_ids = torch.empty((batch_size, seq_length),
 | 
			
		||||
                                dtype=inputs_embeds.dtype, device=inputs_embeds.device)
 | 
			
		||||
 | 
			
		||||
    if full_attention_mask is None:
 | 
			
		||||
        if (attention_mask is not None and not attention_mask.all()) or\
 | 
			
		||||
                (past_key_values and seq_length != 1):
 | 
			
		||||
            full_attention_mask = self.get_masks(input_ids,
 | 
			
		||||
                                                 past_key_values,
 | 
			
		||||
                                                 padding_mask=attention_mask)
 | 
			
		||||
 | 
			
		||||
    # Rotary positional embeddings
 | 
			
		||||
    rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
 | 
			
		||||
    if position_ids is not None:
 | 
			
		||||
        rotary_pos_emb = rotary_pos_emb[position_ids]
 | 
			
		||||
    else:
 | 
			
		||||
        rotary_pos_emb = rotary_pos_emb[None, :seq_length]
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes begin:
 | 
			
		||||
    # generate `causal_mask` and replace `full_attention_mask` with it
 | 
			
		||||
 | 
			
		||||
    # `full_attention_mask` is not None only when
 | 
			
		||||
    #  `past_key_values` is not None and `seq_length` > 1
 | 
			
		||||
    if full_attention_mask is not None:
 | 
			
		||||
        causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
 | 
			
		||||
                                  dtype=inputs_embeds.dtype, device=inputs_embeds.device)
 | 
			
		||||
        mask_value = torch.finfo(inputs_embeds.dtype).min
 | 
			
		||||
        causal_mask.masked_fill_(full_attention_mask, mask_value)
 | 
			
		||||
    else:
 | 
			
		||||
        causal_mask = None
 | 
			
		||||
 | 
			
		||||
    hidden_states, presents, all_hidden_states, all_self_attentions = chatglm4_encoder_forward(
 | 
			
		||||
        self.encoder, inputs_embeds, causal_mask, rotary_pos_emb=rotary_pos_emb,
 | 
			
		||||
        kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if presents is not None and type(presents) is torch.Tensor:
 | 
			
		||||
        presents = presents.split(1, dim=0)
 | 
			
		||||
        presents = list(presents)
 | 
			
		||||
        presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
 | 
			
		||||
        presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
 | 
			
		||||
        presents = tuple(presents)
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
 | 
			
		||||
                     if v is not None)
 | 
			
		||||
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=presents,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attentions,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm4_encoder_forward(
 | 
			
		||||
    self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
 | 
			
		||||
    use_cache: Optional[bool] = True,
 | 
			
		||||
    output_hidden_states: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
    if not kv_caches:
 | 
			
		||||
        kv_caches = [None for _ in range(self.num_layers)]
 | 
			
		||||
    presents = () if use_cache else None
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    all_self_attentions = None
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    for index in range(self.num_layers):
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        layer = self._get_layer(index)
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_ret = torch.utils.checkpoint.checkpoint(
 | 
			
		||||
                layer,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                rotary_pos_emb,
 | 
			
		||||
                kv_caches[index],
 | 
			
		||||
                use_cache,
 | 
			
		||||
                use_reentrant=False
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # if kv_caches[index] is not None:
 | 
			
		||||
            layer_ret = layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                rotary_pos_emb,
 | 
			
		||||
                kv_cache=kv_caches[index],
 | 
			
		||||
                use_cache=use_cache
 | 
			
		||||
            )
 | 
			
		||||
        hidden_states, kv_cache = layer_ret
 | 
			
		||||
 | 
			
		||||
        # ipex-llm changes start: use tuple format kv cache
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            presents = presents + (kv_cache,)
 | 
			
		||||
        # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # Final layer norm.
 | 
			
		||||
    if self.post_layer_norm:
 | 
			
		||||
        hidden_states = self.final_layernorm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    return hidden_states, presents, all_hidden_states, all_self_attentions
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.jit.script
 | 
			
		||||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    # x: [b, np, sq, hn]
 | 
			
		||||
    b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
 | 
			
		||||
    rot_dim = rope_cache.shape[-2] * 2
 | 
			
		||||
    x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
 | 
			
		||||
    # truncate to support variable sizes
 | 
			
		||||
    rope_cache = rope_cache[:, :sq]
 | 
			
		||||
    xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
 | 
			
		||||
    rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
 | 
			
		||||
    x_out2 = torch.stack(
 | 
			
		||||
        [
 | 
			
		||||
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
 | 
			
		||||
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
 | 
			
		||||
        ],
 | 
			
		||||
        -1,
 | 
			
		||||
    )
 | 
			
		||||
    x_out2 = x_out2.flatten(3)
 | 
			
		||||
    return torch.cat((x_out2, x_pass), dim=-1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm4_attention_forward(
 | 
			
		||||
    self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
 | 
			
		||||
):
 | 
			
		||||
    # hidden_states: [b, sq, h]
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    # past_key_value: [bsz, n_kv_head, seq_len, head_dim]
 | 
			
		||||
    past_key_value = kv_cache
 | 
			
		||||
 | 
			
		||||
    n_head = self.num_attention_heads_per_partition
 | 
			
		||||
    n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
 | 
			
		||||
    head_dim = self.hidden_size_per_attention_head
 | 
			
		||||
 | 
			
		||||
    qkv = self.query_key_value(hidden_states)
 | 
			
		||||
    # [bs, q_len, np * 3 * hn] -> [bsz, n_head, seq_len, head_dim]
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, n_head + 2 * n_kv_head, head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([n_head,
 | 
			
		||||
                                                        n_kv_head,
 | 
			
		||||
                                                        n_kv_head], dim=1)
 | 
			
		||||
 | 
			
		||||
    if rotary_pos_emb is not None:
 | 
			
		||||
        query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
 | 
			
		||||
        key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[2]
 | 
			
		||||
 | 
			
		||||
    key_states, value_states = update_past_key_value(
 | 
			
		||||
        past_key_value, key_states, value_states,
 | 
			
		||||
        kv_seq_len, False, hidden_states.device
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        past_key_value = (key_states, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        past_key_value = None
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, n_head // n_kv_head)
 | 
			
		||||
    value_states = repeat_kv(value_states, n_head // n_kv_head)
 | 
			
		||||
 | 
			
		||||
    if query_states.size(2) == key_states.size(2):
 | 
			
		||||
        # first token
 | 
			
		||||
        from intel_npu_acceleration_library.functional import scaled_dot_product_attention
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states,
 | 
			
		||||
            key_states,
 | 
			
		||||
            value_states,
 | 
			
		||||
            attn_mask=attention_mask,
 | 
			
		||||
            is_causal=attention_mask is None and q_len > 1 and bsz == 1,
 | 
			
		||||
        )
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
 | 
			
		||||
                                    key_states.transpose(2, 3))
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    # context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, n_head * head_dim)
 | 
			
		||||
    output = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
    return output, past_key_value
 | 
			
		||||
| 
						 | 
				
			
			@ -137,12 +137,22 @@ def optimize_llm(model: torch.nn.Module):
 | 
			
		|||
        convert_forward(model, module.MiniCPMMLP, minicpm_mlp_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "chatglm":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        convert_forward(model, module.ChatGLMModel, chatglm2_model_forward)
 | 
			
		||||
        convert_forward(model, module.SelfAttention, chatglm2_attention_forward)
 | 
			
		||||
        if model.config.num_layers == 40 and hasattr(model.config, 'rope_ratio'):
 | 
			
		||||
            # glm-4-9b
 | 
			
		||||
            from ipex_llm.transformers.npu_models.chatglm4 import chatglm4_model_forward
 | 
			
		||||
            from ipex_llm.transformers.npu_models.chatglm4 import chatglm4_attention_forward
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            convert_forward(model, module.ChatGLMModel, chatglm4_model_forward)
 | 
			
		||||
            convert_forward(model, module.SelfAttention, chatglm4_attention_forward)
 | 
			
		||||
        else:
 | 
			
		||||
            # chatglm-3-6b
 | 
			
		||||
            from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward
 | 
			
		||||
            from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            convert_forward(model, module.ChatGLMModel, chatglm2_model_forward)
 | 
			
		||||
            convert_forward(model, module.SelfAttention, chatglm2_attention_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "stablelm":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import merge_qkv
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue