Qwen fused qkv (#10368)
* fused qkv + rope for qwen * quantized kv cache * fix * update qwen * fixed quantized qkv * fix * meet code review * update split * convert.py * extend when no enough kv * fix
This commit is contained in:
		
							parent
							
								
									741c2bf1df
								
							
						
					
					
						commit
						28c4a8cf5c
					
				
					 2 changed files with 346 additions and 84 deletions
				
			
		| 
						 | 
				
			
			@ -587,6 +587,41 @@ def _optimize_pre(model):
 | 
			
		|||
    ):
 | 
			
		||||
        from bigdl.llm.transformers.models.bert import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    if model.config.model_type == "qwen":
 | 
			
		||||
        position_ids = torch.arange(0, model.config.max_position_embeddings)
 | 
			
		||||
        rope_base = model.config.rotary_emb_base
 | 
			
		||||
        from accelerate.big_modeling import init_empty_weights
 | 
			
		||||
 | 
			
		||||
        def split_qkv_proj_func(module):
 | 
			
		||||
            if "QWenAttention" in module.__class__.__name__:
 | 
			
		||||
                c_attn_weight = module.c_attn.weight.data
 | 
			
		||||
                c_attn_bias = module.c_attn.bias.data
 | 
			
		||||
                projection_size = module.projection_size
 | 
			
		||||
                hid_size = module.hidden_size
 | 
			
		||||
                with init_empty_weights():
 | 
			
		||||
                    q_proj = torch.nn.Linear(hid_size, projection_size)
 | 
			
		||||
                    k_proj = torch.nn.Linear(hid_size, projection_size)
 | 
			
		||||
                    v_proj = torch.nn.Linear(hid_size, projection_size)
 | 
			
		||||
                if not model.config.to_dict().get("bigdl_transformers_low_bit", False):
 | 
			
		||||
                    q_proj.weight = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_weight[:projection_size, :], requires_grad=False)
 | 
			
		||||
                    q_proj.bias = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_bias[:projection_size], requires_grad=False)
 | 
			
		||||
                    k_proj.weight = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_weight[projection_size: 2 * projection_size, :], requires_grad=False)
 | 
			
		||||
                    k_proj.bias = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_bias[projection_size: 2 * projection_size], requires_grad=False)
 | 
			
		||||
                    v_proj.weight = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_weight[2 * projection_size:, :], requires_grad=False)
 | 
			
		||||
                    v_proj.bias = torch.nn.Parameter(
 | 
			
		||||
                        c_attn_bias[2 * projection_size:], requires_grad=False)
 | 
			
		||||
                module.q_proj = q_proj
 | 
			
		||||
                module.k_proj = k_proj
 | 
			
		||||
                module.v_proj = v_proj
 | 
			
		||||
                module.position_ids = position_ids
 | 
			
		||||
                module.rope_base = rope_base
 | 
			
		||||
                del module.c_attn
 | 
			
		||||
        model.apply(split_qkv_proj_func)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -66,7 +66,56 @@ def apply_rotary_pos_emb(t, freqs):
 | 
			
		|||
    return torch.cat((t_, t_pass_), dim=-1).type_as(t)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, query_states):
 | 
			
		||||
    use_fuse_rope = query_states.device.type == "xpu"
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
 | 
			
		||||
    return use_fuse_rope
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def is_enough_kv_cache_room(layer_past, kv_seq_len=1):
 | 
			
		||||
    # to determinate if is enough kv cache room in transformers between 4.31 and 4.35
 | 
			
		||||
    # seq_len for current seq len
 | 
			
		||||
    # For llama like kv cache, i.e., [bs, n_head, seq_len, head_dim]
 | 
			
		||||
    if layer_past is None:
 | 
			
		||||
        return False
 | 
			
		||||
    else:
 | 
			
		||||
        cache_k, cache_v = layer_past[0], layer_past[1]
 | 
			
		||||
        cache_k = cache_k.transpose(1, 2)
 | 
			
		||||
        cache_v = cache_v.transpose(1, 2)
 | 
			
		||||
        return cache_k.stride(1) < (kv_seq_len + 1) * cache_k.size(3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen_attention_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
        rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
        attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        encoder_hidden_states: Optional[torch.Tensor] = None,
 | 
			
		||||
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = False,
 | 
			
		||||
        use_cache: Optional[bool] = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
			
		||||
        forward_function = qwen_attention_forward_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = qwen_attention_forward_original
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states,
 | 
			
		||||
        rotary_pos_emb_list,
 | 
			
		||||
        layer_past,
 | 
			
		||||
        attention_mask,
 | 
			
		||||
        head_mask,
 | 
			
		||||
        encoder_hidden_states,
 | 
			
		||||
        encoder_attention_mask,
 | 
			
		||||
        output_attentions,
 | 
			
		||||
        use_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen_attention_forward_original(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
    rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -80,55 +129,92 @@ def qwen_attention_forward(
 | 
			
		|||
):
 | 
			
		||||
    invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
 | 
			
		||||
                      "flash attn and kv_cache quantization are not supported")
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    mixed_x_layer = self.c_attn(hidden_states)
 | 
			
		||||
    query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states)
 | 
			
		||||
    decoding_fast_path = (use_fuse_rope and bsz * q_len == 1)
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        cache_k, cache_v = layer_past[0], layer_past[1]
 | 
			
		||||
        cache_k = cache_k.transpose(1, 2)
 | 
			
		||||
        cache_v = cache_v.transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
			
		||||
    key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
			
		||||
    value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
			
		||||
    # query, key, value's shape: [bs, seq_len, num_heads, head_dim]
 | 
			
		||||
        kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
        self.position_ids = self.position_ids.to(device)
 | 
			
		||||
        position_ids = self.position_ids[kv_seq_len]
 | 
			
		||||
        base = self.rope_base
 | 
			
		||||
        if is_enough_kv_cache_room(layer_past, kv_seq_len):
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=hidden_states.device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
    if rotary_pos_emb_list is not None:
 | 
			
		||||
        use_fuse_rope = query.device.type == "xpu" and not (self.training and query.requires_grad)
 | 
			
		||||
        cur_len = query.shape[1]
 | 
			
		||||
        if len(rotary_pos_emb_list) == 1:
 | 
			
		||||
            rotary_pos_emb = rotary_pos_emb_list[0]
 | 
			
		||||
            rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
            if use_fuse_rope:
 | 
			
		||||
                cos, sin = rotary_pos_emb
 | 
			
		||||
                cos = cos.to(query.dtype)
 | 
			
		||||
                sin = sin.to(query.dtype)
 | 
			
		||||
                query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key, sin, cos, "qwen")
 | 
			
		||||
            else:
 | 
			
		||||
                rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
                q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
                # Slice the pos emb for current inference
 | 
			
		||||
                query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
			
		||||
                key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
			
		||||
        else:
 | 
			
		||||
            query_list = []
 | 
			
		||||
            key_list = []
 | 
			
		||||
            for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
 | 
			
		||||
        args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
 | 
			
		||||
                self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
 | 
			
		||||
                self.v_proj.bias.data, position_ids, cache_k, cache_v, self.q_proj.weight.qtype,
 | 
			
		||||
                self.v_proj.weight.qtype, kv_seq_len, self.head_dim, base]
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        query, key, value = linear_q4_0.forward_qkv_bias(*args)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        query_size, key_size = 1, 1
 | 
			
		||||
    else:
 | 
			
		||||
        query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        # TODO: speed up
 | 
			
		||||
        # mixed_x_layer = self.c_attn(hidden_states)
 | 
			
		||||
        # query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
			
		||||
 | 
			
		||||
        # query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
			
		||||
        # key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
			
		||||
        # value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
			
		||||
        if rotary_pos_emb_list is not None:
 | 
			
		||||
            cur_len = query.shape[1]
 | 
			
		||||
            if len(rotary_pos_emb_list) == 1:
 | 
			
		||||
                rotary_pos_emb = rotary_pos_emb_list[0]
 | 
			
		||||
                rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
                if use_fuse_rope:
 | 
			
		||||
                    cos, sin = rotary_pos_emb
 | 
			
		||||
                    cos = cos.to(query.dtype)
 | 
			
		||||
                    sin = sin.to(query.dtype)
 | 
			
		||||
                    query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key, sin, cos, "qwen")
 | 
			
		||||
                    query_list += [query]
 | 
			
		||||
                    key_list += [key]
 | 
			
		||||
                else:
 | 
			
		||||
                    rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
                    q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
                    # Slice the pos emb for current inference
 | 
			
		||||
                    query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
 | 
			
		||||
                    key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
 | 
			
		||||
            query = torch.cat(query_list, dim=0)
 | 
			
		||||
            key = torch.cat(key_list, dim=0)
 | 
			
		||||
 | 
			
		||||
    query_size, key_size = query.size(1), key.size(1)
 | 
			
		||||
    kv_seq_len = key_size if layer_past is None else key_size + layer_past[0].size(1)
 | 
			
		||||
                    query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
			
		||||
                    key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
			
		||||
            else:
 | 
			
		||||
                query_list = []
 | 
			
		||||
                key_list = []
 | 
			
		||||
                for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
 | 
			
		||||
                    rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
                    if use_fuse_rope:
 | 
			
		||||
                        cos, sin = rotary_pos_emb
 | 
			
		||||
                        cos = cos.to(query.dtype)
 | 
			
		||||
                        sin = sin.to(query.dtype)
 | 
			
		||||
                        query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key,
 | 
			
		||||
                                                                         sin, cos, "qwen")
 | 
			
		||||
                        query_list += [query]
 | 
			
		||||
                        key_list += [key]
 | 
			
		||||
                    else:
 | 
			
		||||
                        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
                        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
                        # Slice the pos emb for current inference
 | 
			
		||||
                        query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
 | 
			
		||||
                        key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
 | 
			
		||||
                query = torch.cat(query_list, dim=0)
 | 
			
		||||
                key = torch.cat(key_list, dim=0)
 | 
			
		||||
        query_size, key_size = query.size(1), key.size(1)
 | 
			
		||||
        kv_seq_len = key_size if layer_past is None else key_size + layer_past[0].size(1)
 | 
			
		||||
 | 
			
		||||
    if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
 | 
			
		||||
        seq_start = kv_seq_len - query_size
 | 
			
		||||
| 
						 | 
				
			
			@ -146,42 +232,12 @@ def qwen_attention_forward(
 | 
			
		|||
    else:
 | 
			
		||||
        causal_mask = None
 | 
			
		||||
 | 
			
		||||
    if use_quantize_kv_cache(self.c_attn, hidden_states):
 | 
			
		||||
        query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
 | 
			
		||||
        # query, key, value's shape: [bs, num_heads, seq_len, head_dim]
 | 
			
		||||
 | 
			
		||||
        if layer_past is None:
 | 
			
		||||
            # For first token, use original attn
 | 
			
		||||
            attn_output, attn_weight = self._attn(
 | 
			
		||||
                query, key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
            )
 | 
			
		||||
            if use_cache:
 | 
			
		||||
                max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
                k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                    query.size(0), self.num_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
                    device=query.device,
 | 
			
		||||
                )
 | 
			
		||||
                key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
 | 
			
		||||
        else:
 | 
			
		||||
            k_cache, v_cache = layer_past[0], layer_past[1]
 | 
			
		||||
            k_cache = k_cache.transpose(1, 2)
 | 
			
		||||
            v_cache = v_cache.transpose(1, 2)
 | 
			
		||||
            # k_cache and v_cache's shape: [bs, num_heads, context_length, head_dim]
 | 
			
		||||
 | 
			
		||||
            key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
 | 
			
		||||
 | 
			
		||||
            attn_output, attn_weight = core_attn(
 | 
			
		||||
                self, query, key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        bsz = key.size(0)
 | 
			
		||||
        if layer_past is not None:
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        if not decoding_fast_path:
 | 
			
		||||
            cache_k, cache_v = layer_past[0], layer_past[1]
 | 
			
		||||
            cache_k = cache_k.transpose(1, 2)
 | 
			
		||||
            cache_v = cache_v.transpose(1, 2)
 | 
			
		||||
            if cache_k.stride(1) < kv_seq_len * cache_k.size(3):
 | 
			
		||||
                # allocate new
 | 
			
		||||
                new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                           self.num_heads,
 | 
			
		||||
                                                           self.head_dim,
 | 
			
		||||
| 
						 | 
				
			
			@ -193,31 +249,202 @@ def qwen_attention_forward(
 | 
			
		|||
                new_cache_v[:] = cache_v
 | 
			
		||||
                cache_k = new_cache_k
 | 
			
		||||
                cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
            key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
			
		||||
                                                       key.transpose(1, 2), value.transpose(1, 2))
 | 
			
		||||
            key = key_states
 | 
			
		||||
            value = value_states
 | 
			
		||||
        elif use_cache:
 | 
			
		||||
            max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                             self.num_heads,
 | 
			
		||||
                                                             self.head_dim,
 | 
			
		||||
                                                             kv_seq_len,
 | 
			
		||||
                                                             max_cache_length,
 | 
			
		||||
                                                             dtype=key.dtype,
 | 
			
		||||
                                                             device=hidden_states.device)
 | 
			
		||||
            new_key_states[:] = key.transpose(1, 2)
 | 
			
		||||
            new_value_states[:] = value.transpose(1, 2)
 | 
			
		||||
            key = new_key_states
 | 
			
		||||
            value = new_value_states
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key.dtype,
 | 
			
		||||
                                                         device=hidden_states.device)
 | 
			
		||||
        new_key_states[:] = key.transpose(1, 2)
 | 
			
		||||
        new_value_states[:] = value.transpose(1, 2)
 | 
			
		||||
        key = new_key_states
 | 
			
		||||
        value = new_value_states
 | 
			
		||||
 | 
			
		||||
    if not decoding_fast_path:
 | 
			
		||||
        query = query.transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        attn_output, attn_weight = self._attn(
 | 
			
		||||
            query.to(key.dtype), key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
    attn_output, attn_weight = self._attn(
 | 
			
		||||
        query.to(key.dtype), key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    context_layer = self._merge_heads(
 | 
			
		||||
        attn_output, self.num_heads, self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = self.c_proj(context_layer)
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        outputs = (attn_output, (key.transpose(1, 2), value.transpose(1, 2)))
 | 
			
		||||
    else:
 | 
			
		||||
        outputs = (attn_output, None)
 | 
			
		||||
    if output_attentions:
 | 
			
		||||
        outputs += (attn_weight,)
 | 
			
		||||
 | 
			
		||||
    return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen_attention_forward_quantized(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
        rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
        attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        encoder_hidden_states: Optional[torch.Tensor] = None,
 | 
			
		||||
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = False,
 | 
			
		||||
        use_cache: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
    invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
 | 
			
		||||
                      "flash attn and kv_cache quantization are not supported")
 | 
			
		||||
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states)
 | 
			
		||||
    # TODO: use when decoding_fast_path = (use_fuse_rope and bsz * q_len == 1)
 | 
			
		||||
    decoding_fast_path = False
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
			
		||||
            bsz,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            0,
 | 
			
		||||
            1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        position_ids = self.position_ids[self.kv_seq_len].to(device)
 | 
			
		||||
        base = self.rope_base
 | 
			
		||||
 | 
			
		||||
        args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
 | 
			
		||||
                self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
 | 
			
		||||
                self.v_proj.bias.data, position_ids, tmp_cache_k, tmp_cache_v,
 | 
			
		||||
                self.q_proj.weight.qtype, self.v_proj.weight.qtype, 0, self.head_dim, base]
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        query, key, value = linear_q4_0.forward_qkv_bias(*args)
 | 
			
		||||
        self.kv_seq_len += 1
 | 
			
		||||
        kv_seq_len = self.kv_seq_len
 | 
			
		||||
        query_size, key_size = 1, 1
 | 
			
		||||
    else:
 | 
			
		||||
        query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        # TODO: speed up
 | 
			
		||||
        # mixed_x_layer = self.c_attn(hidden_states)
 | 
			
		||||
        # query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
			
		||||
 | 
			
		||||
        # query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
			
		||||
        # key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
			
		||||
        # value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
			
		||||
        if rotary_pos_emb_list is not None:
 | 
			
		||||
            cur_len = query.shape[1]
 | 
			
		||||
            if len(rotary_pos_emb_list) == 1:
 | 
			
		||||
                rotary_pos_emb = rotary_pos_emb_list[0]
 | 
			
		||||
                rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
                if use_fuse_rope:
 | 
			
		||||
                    cos, sin = rotary_pos_emb
 | 
			
		||||
                    cos = cos.to(query.dtype)
 | 
			
		||||
                    sin = sin.to(query.dtype)
 | 
			
		||||
                    query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key, sin, cos, "qwen")
 | 
			
		||||
                else:
 | 
			
		||||
                    rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
                    q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
                    # Slice the pos emb for current inference
 | 
			
		||||
                    query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
			
		||||
                    key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
			
		||||
            else:
 | 
			
		||||
                query_list = []
 | 
			
		||||
                key_list = []
 | 
			
		||||
                for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
 | 
			
		||||
                    rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
                    if use_fuse_rope:
 | 
			
		||||
                        cos, sin = rotary_pos_emb
 | 
			
		||||
                        cos = cos.to(query.dtype)
 | 
			
		||||
                        sin = sin.to(query.dtype)
 | 
			
		||||
                        query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key,
 | 
			
		||||
                                                                         sin, cos, "qwen")
 | 
			
		||||
                        query_list += [query]
 | 
			
		||||
                        key_list += [key]
 | 
			
		||||
                    else:
 | 
			
		||||
                        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
                        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
                        # Slice the pos emb for current inference
 | 
			
		||||
                        query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
 | 
			
		||||
                        key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
 | 
			
		||||
                query = torch.cat(query_list, dim=0)
 | 
			
		||||
                key = torch.cat(key_list, dim=0)
 | 
			
		||||
        query_size, key_size = query.size(1), key.size(1)
 | 
			
		||||
        kv_seq_len = key_size if layer_past is None else key_size + layer_past[0].size(1)
 | 
			
		||||
 | 
			
		||||
    if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
 | 
			
		||||
        seq_start = kv_seq_len - query_size
 | 
			
		||||
        seq_end = kv_seq_len
 | 
			
		||||
        logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
 | 
			
		||||
        query = query * logn_tensor.expand_as(query)
 | 
			
		||||
 | 
			
		||||
    if query_size > 1:
 | 
			
		||||
        causal_mask = torch.tril(
 | 
			
		||||
            torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query.device)
 | 
			
		||||
        ).view(1, 1, kv_seq_len, kv_seq_len)
 | 
			
		||||
        causal_mask = causal_mask[
 | 
			
		||||
            :, :, kv_seq_len - query_size:kv_seq_len, :kv_seq_len
 | 
			
		||||
        ]
 | 
			
		||||
    else:
 | 
			
		||||
        causal_mask = None
 | 
			
		||||
 | 
			
		||||
    if layer_past is None:
 | 
			
		||||
        query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
 | 
			
		||||
        # query, key, value's shape: [bs, num_heads, seq_len, head_dim]
 | 
			
		||||
 | 
			
		||||
        # save kv seq len for decoding_fast_path
 | 
			
		||||
        self.kv_seq_len = key.shape[-2]
 | 
			
		||||
        # For first token, use original attn
 | 
			
		||||
        attn_output, attn_weight = self._attn(
 | 
			
		||||
            query, key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
        )
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                query.size(0), self.num_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
                device=query.device,
 | 
			
		||||
            )
 | 
			
		||||
            key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
 | 
			
		||||
    else:
 | 
			
		||||
        if decoding_fast_path:
 | 
			
		||||
            k_cache, v_cache = layer_past[0], layer_past[1]
 | 
			
		||||
            k_cache = k_cache.transpose(1, 2)
 | 
			
		||||
            v_cache = v_cache.transpose(1, 2)
 | 
			
		||||
            # k_cache and v_cache's shape: [bs, num_heads, context_length, head_dim]
 | 
			
		||||
 | 
			
		||||
            key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
 | 
			
		||||
 | 
			
		||||
            attn_output, attn_weight = core_attn(
 | 
			
		||||
                self, query, key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
 | 
			
		||||
            k_cache, v_cache = layer_past[0], layer_past[1]
 | 
			
		||||
            k_cache = k_cache.transpose(1, 2)
 | 
			
		||||
            v_cache = v_cache.transpose(1, 2)
 | 
			
		||||
            # k_cache and v_cache's shape: [bs, num_heads, context_length, head_dim]
 | 
			
		||||
 | 
			
		||||
            key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
 | 
			
		||||
 | 
			
		||||
            attn_output, attn_weight = core_attn(
 | 
			
		||||
                self, query, key, value, causal_mask, attention_mask, head_mask
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    context_layer = self._merge_heads(
 | 
			
		||||
        attn_output, self.num_heads, self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue