bigdl-llm: add voice-assistant example that are migrated from langchain use-case document (#8468)
This commit is contained in:
parent
98bac815e4
commit
254a7aa3c4
2 changed files with 147 additions and 0 deletions
|
|
@ -44,3 +44,29 @@ arguments info:
|
||||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||||
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
||||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||||
|
|
||||||
|
### 3. Voice Assistant
|
||||||
|
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
|
||||||
|
|
||||||
|
Some extra dependencies are required to be installed for this example.
|
||||||
|
```bash
|
||||||
|
pip install SpeechRecognition
|
||||||
|
pip install pyttsx3
|
||||||
|
pip install PyAudio
|
||||||
|
pip install whisper.ai
|
||||||
|
pip install soundfile
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python ./voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM
|
||||||
|
```
|
||||||
|
|
||||||
|
arguments info:
|
||||||
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
||||||
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||||
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||||
|
|
||||||
|
When you see output says
|
||||||
|
> listening now...
|
||||||
|
|
||||||
|
Please say something through your microphone (e.g. What is AI). The programe will automatically detect when you have completed your speech and recogize them.
|
||||||
|
|
|
||||||
121
python/llm/example/langchain/native_int4/voiceassistant.py
Normal file
121
python/llm/example/langchain/native_int4/voiceassistant.py
Normal file
|
|
@ -0,0 +1,121 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||||
|
# physically located elsewhere.
|
||||||
|
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||||
|
# only search the first bigdl package and end up finding only one sub-package.
|
||||||
|
|
||||||
|
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
|
||||||
|
|
||||||
|
|
||||||
|
from langchain import LLMChain, PromptTemplate
|
||||||
|
from bigdl.llm.langchain.llms import BigdlNativeLLM
|
||||||
|
from langchain.memory import ConversationBufferWindowMemory
|
||||||
|
from langchain.callbacks.manager import CallbackManager
|
||||||
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
|
import speech_recognition as sr
|
||||||
|
import pyttsx3
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_chain(args):
|
||||||
|
|
||||||
|
model_path = args.model_path
|
||||||
|
model_family = args.model_family
|
||||||
|
n_threads = args.thread_num
|
||||||
|
|
||||||
|
# Use a easy prompt could bring good-enough result
|
||||||
|
template = """
|
||||||
|
{history}
|
||||||
|
Q: {human_input}
|
||||||
|
A:"""
|
||||||
|
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
|
||||||
|
|
||||||
|
# We use our BigdlNativeLLM to subsititute OpenAI web-required API
|
||||||
|
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||||
|
llm = BigdlNativeLLM(
|
||||||
|
model_path=model_path,
|
||||||
|
model_family=model_family,
|
||||||
|
n_threads=n_threads,
|
||||||
|
callback_manager=callback_manager,
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Following code are complete the same as the use-case
|
||||||
|
voiceassitant_chain = LLMChain(
|
||||||
|
llm=llm,
|
||||||
|
prompt=prompt,
|
||||||
|
verbose=True,
|
||||||
|
memory=ConversationBufferWindowMemory(k=2),
|
||||||
|
)
|
||||||
|
|
||||||
|
return voiceassitant_chain
|
||||||
|
|
||||||
|
|
||||||
|
def listen(voiceassitant_chain):
|
||||||
|
engine = pyttsx3.init()
|
||||||
|
r = sr.Recognizer()
|
||||||
|
with sr.Microphone() as source:
|
||||||
|
print("Calibrating...")
|
||||||
|
r.adjust_for_ambient_noise(source, duration=5)
|
||||||
|
# optional parameters to adjust microphone sensitivity
|
||||||
|
# r.energy_threshold = 200
|
||||||
|
# r.pause_threshold=0.5
|
||||||
|
|
||||||
|
print("Okay, go!")
|
||||||
|
while 1:
|
||||||
|
text = ""
|
||||||
|
print("listening now...")
|
||||||
|
try:
|
||||||
|
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||||||
|
print("Recognizing...")
|
||||||
|
# whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages
|
||||||
|
# other speech recognition models are also available.
|
||||||
|
text = r.recognize_whisper(
|
||||||
|
audio,
|
||||||
|
model="medium.en",
|
||||||
|
show_dict=True,
|
||||||
|
)["text"]
|
||||||
|
except Exception as e:
|
||||||
|
unrecognized_speech_text = (
|
||||||
|
f"Sorry, I didn't catch that. Exception was: {e}s"
|
||||||
|
)
|
||||||
|
text = unrecognized_speech_text
|
||||||
|
print(text)
|
||||||
|
|
||||||
|
response_text = voiceassitant_chain.predict(human_input=text)
|
||||||
|
print(response_text)
|
||||||
|
engine.say(response_text)
|
||||||
|
engine.runAndWait()
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
chain = prepare_chain(args)
|
||||||
|
listen(chain)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Voice Assistant Example')
|
||||||
|
parser.add_argument('-x','--model-family', type=str, required=True,
|
||||||
|
help='the model family')
|
||||||
|
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||||
|
help='the path to the converted llm model')
|
||||||
|
parser.add_argument('-t','--thread-num', type=int, default=2,
|
||||||
|
help='Number of threads to use for inference')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
main(args)
|
||||||
Loading…
Reference in a new issue