parent
							
								
									7d8bc83415
								
							
						
					
					
						commit
						24de13fc45
					
				
					 2 changed files with 208 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -118,3 +118,18 @@ def optimize_llm(model: torch.nn.Module):
 | 
			
		|||
        convert_forward(model, module.MiniCPMForCausalLM, minicpm_model_causal_lm_forward)
 | 
			
		||||
        convert_forward(model, module.MiniCPMAttention, minicpm_attention_forward)
 | 
			
		||||
        convert_forward(model, module.MiniCPMMLP, minicpm_mlp_forward)
 | 
			
		||||
    elif model.config.model_type == "stablelm":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import merge_qkv
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import merge_mlp
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
        model.apply(merge_mlp)
 | 
			
		||||
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import stablelm_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import stablelm_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.stablelm import stablelm_mlp_forward
 | 
			
		||||
        from transformers.models.stablelm.modeling_stablelm import StableLmModel
 | 
			
		||||
        from transformers.models.stablelm.modeling_stablelm import StableLmAttention
 | 
			
		||||
        from transformers.models.stablelm.modeling_stablelm import StableLmMLP
 | 
			
		||||
        convert_forward(model, StableLmModel, stablelm_model_forward)
 | 
			
		||||
        convert_forward(model, StableLmAttention, stablelm_attention_forward)
 | 
			
		||||
        convert_forward(model, StableLmMLP, stablelm_mlp_forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										193
									
								
								python/llm/src/ipex_llm/transformers/npu_models/stablelm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										193
									
								
								python/llm/src/ipex_llm/transformers/npu_models/stablelm.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,193 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.stablelm.modeling_stablelm import repeat_kv, apply_rotary_pos_emb
 | 
			
		||||
from transformers.models.stablelm.modeling_stablelm import StableLmAttention, StableLmMLP, \
 | 
			
		||||
    StableLmModel
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_models.common import merge_linear
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
    if isinstance(module, StableLmAttention):
 | 
			
		||||
        new_weight = torch.cat([
 | 
			
		||||
            module.q_proj.weight.data,
 | 
			
		||||
            module.k_proj.weight.data,
 | 
			
		||||
            module.v_proj.weight.data,
 | 
			
		||||
        ], dim=0)
 | 
			
		||||
 | 
			
		||||
        if module.q_proj.bias is not None:
 | 
			
		||||
            qkv_proj = torch.nn.Linear(0, 0, bias=True)
 | 
			
		||||
            new_bias = torch.cat([
 | 
			
		||||
                module.q_proj.bias.data,
 | 
			
		||||
                module.k_proj.bias.data,
 | 
			
		||||
                module.v_proj.bias.data,
 | 
			
		||||
            ], dim=0)
 | 
			
		||||
            qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
 | 
			
		||||
        else:
 | 
			
		||||
            qkv_proj = torch.nn.Linear(0, 0, bias=False)
 | 
			
		||||
        qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
 | 
			
		||||
        qkv_proj.in_features = new_weight.size(1)
 | 
			
		||||
        qkv_proj.out_features = new_weight.size(0)
 | 
			
		||||
        module.qkv_proj = qkv_proj
 | 
			
		||||
 | 
			
		||||
        del module.q_proj, module.k_proj, module.v_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_mlp(module: torch.nn.Module):
 | 
			
		||||
    if isinstance(module, StableLmMLP):
 | 
			
		||||
        gate_up_proj = merge_linear([
 | 
			
		||||
            module.gate_proj,
 | 
			
		||||
            module.up_proj,
 | 
			
		||||
        ])
 | 
			
		||||
        module.gate_up_proj = gate_up_proj
 | 
			
		||||
        del module.gate_proj, module.up_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def stablelm_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
):
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    from ipex_llm.transformers.kv import DynamicNormalCache
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        if not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
    return StableLmModel.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def stablelm_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_key_value_heads,
 | 
			
		||||
                                                        self.num_key_value_heads], dim=1)
 | 
			
		||||
    # For stablelm-2-12b's qk per-head norm
 | 
			
		||||
    if getattr(self, "qk_layernorm", False):
 | 
			
		||||
        query_states = self.q_layernorm(query_states)
 | 
			
		||||
        key_states = self.k_layernorm(key_states)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    # Partial rotary embedding
 | 
			
		||||
    # [batch_size, num_heads, seq_length, head_dim * config.partial_rotary_factor]
 | 
			
		||||
    rot_dim = self.rotary_emb.dim
 | 
			
		||||
 | 
			
		||||
    query_rot, query_pass = query_states[..., :rot_dim], query_states[..., rot_dim:]
 | 
			
		||||
    key_rot, key_pass = key_states[..., :rot_dim], key_states[..., rot_dim:]
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    query_rot, key_rot = apply_rotary_pos_emb(query_rot,
 | 
			
		||||
                                              key_rot,
 | 
			
		||||
                                              cos,
 | 
			
		||||
                                              sin,
 | 
			
		||||
                                              position_ids)
 | 
			
		||||
    query_states = torch.cat((query_rot, query_pass), dim=-1)
 | 
			
		||||
    key_states = torch.cat((key_rot, key_pass), dim=-1)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # Specific to RoPE models with partial rotation
 | 
			
		||||
        cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                               dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
    attn_weights = self.attention_dropout(attn_weights)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def stablelm_mlp_forward(self, x):
 | 
			
		||||
    gate_up_proj = self.gate_up_proj(x)
 | 
			
		||||
    gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
 | 
			
		||||
    down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
 | 
			
		||||
    return down_proj
 | 
			
		||||
		Loading…
	
		Reference in a new issue