add internvl2 example (#12102)
* add internvl2 example * add to README.md * update * add link to zh-CN readme
This commit is contained in:
		
							parent
							
								
									ad1fe77fe6
								
							
						
					
					
						commit
						2269768e71
					
				
					 4 changed files with 240 additions and 0 deletions
				
			
		| 
						 | 
					@ -276,6 +276,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
				
			||||||
| Baichuan   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan)  | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan)   |
 | 
					| Baichuan   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan)  | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan)   |
 | 
				
			||||||
| Baichuan2  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2)  |
 | 
					| Baichuan2  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2)  |
 | 
				
			||||||
| InternLM   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm)  | [link](python/llm/example/GPU/HuggingFace/LLM/internlm)   |
 | 
					| InternLM   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm)  | [link](python/llm/example/GPU/HuggingFace/LLM/internlm)   |
 | 
				
			||||||
 | 
					| InternVL2   |   | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2)   |
 | 
				
			||||||
| Qwen       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen)      | [link](python/llm/example/GPU/HuggingFace/LLM/qwen)       |
 | 
					| Qwen       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen)      | [link](python/llm/example/GPU/HuggingFace/LLM/qwen)       |
 | 
				
			||||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
 | 
					| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
 | 
				
			||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
					| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -276,6 +276,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
				
			||||||
| Baichuan   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan)  | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan)   |
 | 
					| Baichuan   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan)  | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan)   |
 | 
				
			||||||
| Baichuan2  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2)  |
 | 
					| Baichuan2  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2)  |
 | 
				
			||||||
| InternLM   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm)  | [link](python/llm/example/GPU/HuggingFace/LLM/internlm)   |
 | 
					| InternLM   | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm)  | [link](python/llm/example/GPU/HuggingFace/LLM/internlm)   |
 | 
				
			||||||
 | 
					| InternVL2   |   | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2)   |
 | 
				
			||||||
| Qwen       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen)      | [link](python/llm/example/GPU/HuggingFace/LLM/qwen)       |
 | 
					| Qwen       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen)      | [link](python/llm/example/GPU/HuggingFace/LLM/qwen)       |
 | 
				
			||||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
 | 
					| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
 | 
				
			||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
					| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										101
									
								
								python/llm/example/GPU/HuggingFace/Multimodal/internvl2/chat.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								python/llm/example/GPU/HuggingFace/Multimodal/internvl2/chat.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,101 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					from ipex_llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer, CLIPImageProcessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
 | 
					                        default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
 | 
				
			||||||
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					    n_predict = args.n_predict
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
				
			||||||
 | 
					    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                 load_in_low_bit="sym_int4",
 | 
				
			||||||
 | 
					                                                 modules_to_not_convert=["vision_model"])
 | 
				
			||||||
 | 
					    model = model.half().to('xpu')
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    model.eval()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query = args.prompt
 | 
				
			||||||
 | 
					    image_processor = CLIPImageProcessor.from_pretrained(model_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if os.path.exists(image_path):
 | 
				
			||||||
 | 
					       image = Image.open(image_path).convert('RGB')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
				
			||||||
 | 
					       
 | 
				
			||||||
 | 
					    pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
 | 
				
			||||||
 | 
					    pixel_values = pixel_values.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    question = "<image>" + query
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    generation_config = {
 | 
				
			||||||
 | 
					        "max_new_tokens": n_predict,
 | 
				
			||||||
 | 
					        "do_sample": False,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        model.chat(
 | 
				
			||||||
 | 
					            pixel_values=None,
 | 
				
			||||||
 | 
					            question=question,
 | 
				
			||||||
 | 
					            generation_config=generation_config,
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        res = model.chat(
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					            pixel_values=pixel_values,
 | 
				
			||||||
 | 
					            question=question,
 | 
				
			||||||
 | 
					            generation_config=generation_config,
 | 
				
			||||||
 | 
					            history=[]
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					    print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					    print(image_path)
 | 
				
			||||||
 | 
					    print('-'*20, 'Input Prompt', '-'*20)
 | 
				
			||||||
 | 
					    print(args.prompt)
 | 
				
			||||||
 | 
					    print('-'*20, 'Chat Output', '-'*20)
 | 
				
			||||||
 | 
					    print(res)
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,137 @@
 | 
				
			||||||
 | 
					# InternVL2
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternVL2 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) as a reference InternVL2 model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `chat()` API
 | 
				
			||||||
 | 
					In the example [chat.py](./chat.py), we show a basic use case for an InternVL2-4B model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					#### 1.1 Installation on Linux
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.11
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install einops timm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.11 libuv
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install einops timm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!NOTE]
 | 
				
			||||||
 | 
					> Skip this step if you are running on Windows.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Runtime Configurations
 | 
				
			||||||
 | 
					For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
				
			||||||
 | 
					#### 3.1 Configurations for Linux
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export USE_XETLA=OFF
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Data Center GPU Max Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					export ENABLE_SDP_FUSION=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel iGPU</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					export BIGDL_LLM_XMX_DISABLED=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 3.2 Configurations for Windows
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel iGPU</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					set BIGDL_LLM_XMX_DISABLED=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!NOTE]
 | 
				
			||||||
 | 
					> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- chat with specified prompt:
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  python ./chat.py --prompt 'What is in the image?'
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternVL2 (e.g. `OpenGVLab/InternVL2-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'OpenGVLab/InternVL2-4B'`.
 | 
				
			||||||
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `64`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
 | 
					https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg
 | 
				
			||||||
 | 
					-------------------- Input Prompt --------------------
 | 
				
			||||||
 | 
					What is in the image?
 | 
				
			||||||
 | 
					-------------------- Chat Output --------------------
 | 
				
			||||||
 | 
					The image shows a tiger lying on the grass.
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The sample input image is:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg"><img width=400px src="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg" ></a>
 | 
				
			||||||
		Loading…
	
		Reference in a new issue