add internvl2 example (#12102)
* add internvl2 example * add to README.md * update * add link to zh-CN readme
This commit is contained in:
parent
ad1fe77fe6
commit
2269768e71
4 changed files with 240 additions and 0 deletions
|
|
@ -276,6 +276,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
|
||||||
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
|
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
|
||||||
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
|
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
|
||||||
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
|
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
|
||||||
|
| InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) |
|
||||||
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
|
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
|
||||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
|
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
|
||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
|
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
|
||||||
|
|
|
||||||
|
|
@ -276,6 +276,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
|
||||||
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
|
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
|
||||||
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
|
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
|
||||||
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
|
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
|
||||||
|
| InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) |
|
||||||
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
|
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
|
||||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
|
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
|
||||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
|
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
|
||||||
|
|
|
||||||
101
python/llm/example/GPU/HuggingFace/Multimodal/internvl2/chat.py
Normal file
101
python/llm/example/GPU/HuggingFace/Multimodal/internvl2/chat.py
Normal file
|
|
@ -0,0 +1,101 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from ipex_llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer, CLIPImageProcessor
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
|
||||||
|
help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--image-url-or-path', type=str,
|
||||||
|
default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
|
||||||
|
help='The URL or path to the image to infer')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
image_path = args.image_url_or_path
|
||||||
|
n_predict = args.n_predict
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||||||
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
||||||
|
load_in_low_bit="sym_int4",
|
||||||
|
modules_to_not_convert=["vision_model"])
|
||||||
|
model = model.half().to('xpu')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
query = args.prompt
|
||||||
|
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
||||||
|
|
||||||
|
if os.path.exists(image_path):
|
||||||
|
image = Image.open(image_path).convert('RGB')
|
||||||
|
else:
|
||||||
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
||||||
|
|
||||||
|
pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
|
||||||
|
pixel_values = pixel_values.to('xpu')
|
||||||
|
|
||||||
|
question = "<image>" + query
|
||||||
|
|
||||||
|
generation_config = {
|
||||||
|
"max_new_tokens": n_predict,
|
||||||
|
"do_sample": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
||||||
|
model.chat(
|
||||||
|
pixel_values=None,
|
||||||
|
question=question,
|
||||||
|
generation_config=generation_config,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
st = time.time()
|
||||||
|
res = model.chat(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
question=question,
|
||||||
|
generation_config=generation_config,
|
||||||
|
history=[]
|
||||||
|
)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Input Image', '-'*20)
|
||||||
|
print(image_path)
|
||||||
|
print('-'*20, 'Input Prompt', '-'*20)
|
||||||
|
print(args.prompt)
|
||||||
|
print('-'*20, 'Chat Output', '-'*20)
|
||||||
|
print(res)
|
||||||
|
|
@ -0,0 +1,137 @@
|
||||||
|
# InternVL2
|
||||||
|
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternVL2 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) as a reference InternVL2 model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `chat()` API
|
||||||
|
In the example [chat.py](./chat.py), we show a basic use case for an InternVL2-4B model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||||
|
### 1. Install
|
||||||
|
#### 1.1 Installation on Linux
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
||||||
|
pip install einops timm
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 1.2 Installation on Windows
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11 libuv
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
||||||
|
pip install einops timm
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables for Linux
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Skip this step if you are running on Windows.
|
||||||
|
|
||||||
|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Runtime Configurations
|
||||||
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||||
|
#### 3.1 Configurations for Linux
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Data Center GPU Max Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export ENABLE_SDP_FUSION=1
|
||||||
|
```
|
||||||
|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3.2 Configurations for Windows
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
set BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||||
|
### 4. Running examples
|
||||||
|
|
||||||
|
- chat with specified prompt:
|
||||||
|
```
|
||||||
|
python ./chat.py --prompt 'What is in the image?'
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternVL2 (e.g. `OpenGVLab/InternVL2-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'OpenGVLab/InternVL2-4B'`.
|
||||||
|
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `64`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
|
||||||
|
#### [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)
|
||||||
|
|
||||||
|
```log
|
||||||
|
-------------------- Input Image --------------------
|
||||||
|
https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg
|
||||||
|
-------------------- Input Prompt --------------------
|
||||||
|
What is in the image?
|
||||||
|
-------------------- Chat Output --------------------
|
||||||
|
The image shows a tiger lying on the grass.
|
||||||
|
```
|
||||||
|
|
||||||
|
The sample input image is:
|
||||||
|
|
||||||
|
<a href="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg"><img width=400px src="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg" ></a>
|
||||||
Loading…
Reference in a new issue